

Program Name: B. Tech. Mechanical Engineering Program Code: MEC-201

SCHEME & SYLLABUS

(Choice Based Credit System)

for

B. TECH.

in

MECHANICAL ENGINEERING

(w.e.f. Session 2022-23)

Program Code: MEC-201

DEPARTMENT OF MECHANICAL ENGINEERING SCHOOL OF ENGINEERING RIMT UNIVERSITY, MANDI GOBINDGARH, PUNJAB

TABLE OF CONTENTS

S. No.	Content	Page No.
1.	Section 1: Vision and Mission of the University	1
2.	Section 2: Vision and Mission of the Department	2
3.	Section 3: About the Program	3
4.	Section 4: Program Educational Objectives (PEOs), Program Outcomes (POs) and Program Specific Outcomes (PSOs)	4
5.	Section 5: Curriculum / Scheme with Examination Scheme	7
6.	Section 6: Detailed Syllabus with Course Outcomes	10

SECTION 1

Vision & Mission of the University

VISION

To become one of the most preferred learning places a centre of excellence to promote and nurture future leaders who would facilitate in desired change in the society

MISSION

- M1: To impart teaching and learning through cutting edge technologies supported by the world class infrastructure
- M2: To empower and transform young minds into capable leaders and responsible citizens of India instilled with high ethical and moral values

SECTION 2

Vision and Mission of the Department

VISION

To contribute to the society through excellence in scientific and technical education and research. To contribute the country by providing globally competent Mechanical Engineers capable of working in an inter-disciplinary environment which foster spirits of innovation, entrepreneurship and leadership. To support industry for growth, being the valuable resource for them, and remain a role model for others in the field of Mechanical Engineering.

MISSION

- M1: To provide a high-quality educational experience for undergraduate and graduate students that enables them to become leaders in their chosen professions and to make them globally competitive mechanical engineers.
- M2: To create, explore, and develop innovations in engineering and science through undergraduate and graduate research. To develop linkages with world class R&D organizations and educational institutions in India and abroad for excellence in teaching, research and consultancy practices.

SECTION 3

About the Program

Mechanical Engineering Department was established in 2003 with the inception of the institute to produce high quality engineers in the field of Mechanical Engineering. The programme involves application of principles of physics for analysis, design, manufacturing, and maintenance of mechanical systems. It requires a solid understanding of key concepts including Mechanics, Kinematics, Thermodynamics and Energy. Mechanical engineers use these principles and others in the design and analysis of automobiles, aircraft, heating and cooling systems, manufacturing plants, industrial equipment and machinery, medical devices and more.

SECTION 4

Program Educational Objectives (PEOs), Program Outcomes (POs) and Program Specific Outcomes (PSOs)

PROGRAMME EDUCATION OBJECTIVES (PEOs)

PEO1	To prepare learners with a solid foundation in mathematics, sciences, and technical
	skills needed to analyze and design in engineering problems.
PEO2	To be able to explore areas of research, application & innovation and make impact in
	different types of institutional settings such as corporate entities, government bodies,
	NGOs, inter-government organizations, & start-ups.
PEO3	To prepare learners to apply knowledge, strong reasoning, and quantitative skills to
	design and implement creative and sustainable solutions.
PEO4	To prepare learners to effectively use modern equipment's & programming tools to
	solve real life problems that are technically sound, economically feasible and socially
	acceptable.
PEO5	To prepare learners for successful professional career, to excel in higher studies and or
	to become entrepreneur.
PEO6	To be able to continuously learn and update one's knowledge, engage in lifelong
	learning habits and acquire latest knowledge to perform in current work settings.
PEO7	To prepare learners to become responsible citizens by serving the community locally,
	nationally, and internationally.

PROGRAMME OUTCOMES (POs)

PO 1	Apply the knowledge of mathematics, science, engineering fundamentals, and
	mechanical engineering to the solution of complex engineering problems.
PO 2	Identify, formulate, research literature, and analyze complex engineering problems
	reaching substantiated conclusions using first principles of mathematics, natural
	sciences, and engineering sciences
PO 3	Design solutions for complex mechanical engineering problems and design system
	components or processes that meet the specified needs with appropriate consideration
	for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Use research-based knowledge and research methods including design of experiments,
	analysis and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering
	and IT tools including prediction and modeling to complex mechanical engineering
	activities with an understanding of the limitations.
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health,
	safety, legal and cultural issues and the consequent responsibilities relevant to
	professional engineering practice.
PO 7	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge of, and need for sustainable
	development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and
	in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering
	community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO 11	Demonstrate knowledge and understanding of the engineering and management

	principles and apply these to one's own work, as a member and leader in a team, to
	manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1	Apply	mechanical	engineering	and	interdisciplinary	knowledge	for	analyzing,			
	designing and manufacturing products to address the needs of the society.										
PSO 2	Apply state of the art tools and techniques to conceptualize, design and introduce new										
	products, processes, systems and services.										

SECTION 5

Curriculum / Scheme with Examination Grading Scheme

SEMESTER WISE SUMMARY OF THE PROGRAMME: B.TECH. (MECHANICAL ENGINEERING)

S. No.	Semester	No. of Contact Hours	Marks	Credits
1.	Ι	28	900	22
2.	II	28	900	22
3	III	26	900	23
4	IV	25	800	22
5	V	27	1100	23
6	VI	29	900	23
7	VII	29	900	22
8	VIII	-	500	10
	Total	193	6900	167

Marks Percentage Range	Grade	Grade Point	Qualitative Meaning
80-100	0	10	Outstanding
70-79	A^+	9	Excellent
60-69	А	8	Very Good
55-59	B ⁺	7	Good
50-54	В	6	Above Average
45-49	С	5	Average
40-44	Р	4	Fail
0-39	F	0	Fail
ABSENT	AB	0	Fail

EXAMINATION GRADING SCHEME

Percentage Calculation: CGPA *10

Course		Contact Hours/Week				Contact	Evalu (% of	Exam Duration		
Course Code	Course Title	L	Т	Р	Credit	Hrs.	Internal	External	Total	(Hours)
BPHY 1122	Applied Physics	3	1	0	4	4	40	60	100	3 Hrs
BMAT-1111	Engineering Mathematics-I	4	1	0	5	5	40	60	100	3 Hrs
BENG-1101	Communicative English	3	0	0	3	3	40	60	100	3 Hrs
BELE 1101	Basics of Electrical & Electronics Engg.	4	0	0	4	4	40	60	100	3 Hrs
BEVS-1001	Environmental Science	2	0	0	2	2	40	60	100	3 Hrs
BPHY 1185	Applied Physics Lab	0	0	2	1	2	60	40	100	3 Hrs
BENG-1172	Communicative English Lab	0	0	2	1	2	60	40	100	3Hrs
BELE 1171	Basics of Electrical & Electronics Engg. Lab	0	0	2	1	2	60	40	100	3Hrs
BMEC-1171	Manufacturing Practice	1	0	6	4	7	40	60	100	3 Hrs
	Total	17	2	12	25	31			900	

FIRST SEMESTER

Subject			Cont urs/ k	tact Wee	Credi t	Contac tHrs.	Evaluation Scheme (% of Total Marks)			Exam Duration (Hours)
Code	Title	L	Т	Р			Interna l	Extern al	Total	
BELE-1001	Energy Management	2	-	-	2	2	40	60	100	3 Hrs
BCHM-1206	Applied Chemistry	3	1	0	4	4	40	60	100	3 Hrs
BMAT-1211	Engineering Mathematics-II	4	1	0	5	5	40	60	100	3 Hrs
BCSE-1201	Programming for Problem Solving	3	0	0	3	3	40	60	100	3 Hrs
BMEC-1201	Elements of Mechanical Engg.	3	1	0	4	4	40	60	100	3 Hrs
BMEC-1202	Engineering Drawing		0	6	3	7	40	60	100	3 Hrs
BCHM-1273	Applied Chemistry Lab	0	0	2	1	2	60	40	100	3 Hrs
BCSE-1271	Programming for Problem Solving Lab	0	0	2	1	2	60	40	100	3 Hrs
BENG-1001	Soft Skills-I Lab	0	0	2	1	2	60	40	100	3 Hrs
	Total	15	3	12	24	31			900	27 Hrs

SECOND SEMESTER

	Subject	Ho	Contact ours/Wee k		Credi t	Contac tHrs.	Evaluation Scheme (% of Total Marks)		Exam Duration (Hours)	
Code	Title	L	Т	Р			Interna l	Externa l	a Total	
BMEC-2301	Strength of Materials-I	3	1	-	4	4	40	60	100	3 Hrs
BMEC-2302	Theory of Machines-I	3	-	-	3	4	40	60	100	3 Hrs
BMEC-2303	Machine Drawing with AutoCAD	1	-	4	3	7	40	60	100	3 Hrs
BMEC-2304	Applied Thermodynamics-I	3	1	-	4	4	40	60	100	3 Hrs
BMEC-2305	Manufacturing Processes-I	3	-	-	3	3	40	60	100	3 Hrs
BMEC-2306	Engineering Materials & Metallurgy	3	-	-	3	2	60	40	100	3 Hrs
BMEC-2371	Strength of Materials Lab	0	0	2	1	2	50	50	100	3 Hrs
BMEC-2372	Applied Thermodynamics Lab	0	0	2	1	-	50	50	100	3 Hrs
BMEC-2310	Institutional Training	0	0	0	1		100	-	100	3 Hrs
		16	2	8	23		460	440	900	27 Hrs

THIRD SEMESTER

Subject		Ho	Con ours/ k	tact Wee	Credi t	Contac tHrs.	Evaluation Scheme (% of Total Marks)			Exam Duratio n (Hours)
Code	Title	L	Т	Р			Interna l	Exter nal	Total	(110013)
BMEC-2401	Strength of Materials-II	3	1	0	4	4	40	60	100	3 Hrs
BMEC-2402	Theory of Machines-II	3	1	0	4	4	40	60	100	3 Hrs
BMEC-2403	Fluid Mechanics	3	1	0	4	4	40	60	100	3 Hrs
BMEC-2404	Applied Thermodynamics-II	3	1	0	4	4	40	60	100	3 Hrs
BMEC-2405	Manufacturing Processes -II	3	0	0	3	3	40	60	100	3 Hrs
BMEC-2471	Theory of Machines Lab	0	0	2	1	2	50	50	100	3 Hrs
BMEC-2472	Fluid Mechanics Lab	0	0	2	1	2	50	50	100	3 Hrs
BMEC-2473	Manufacturing Practice Lab	0	0	2	1	2	50	50	100	3 Hrs
	Total	15	15	4	6	22	350	450	800	24 Hrs

FOURTH SEMESTER

Subject Contact Hours/Wee Credi Cont k t tH		Contac tHrs.	Evaluation Scheme(% of Total Marks)			Exam Duration (Hours)				
Code	Title	L	T	P			Interna	Extern	Total	
							1	al		
BMEC-3501	Mathematics-III	3	0	-	3	3	40	60	100	3 Hrs
BMEC-3502	Design of Machine Elements-I	3	1	-	4	4	40	60	100	3 Hrs
BMEC-3503	Computer Aided Design & Manufacturing	3	0	-	3	3	40	60	100	3 Hrs
BMEC-3505	Automobile Engineering	3	0	-	3	3	40	60	100	3 Hrs
BMEC-3506	Industrial Automation & Robotics	3	0	-	3	3	40	60	100	3 Hrs
BMEC-3571	Computer Aided Design and Manufacturing Lab	0	0	2	1	-	50	50	100	3 Hrs
BMEC-3572	Automobile Engineering Lab	0	0	2	1	-	50	50	100	3 Hrs
BMEC-3573	Industrial Automation & Robotics Lab	0	0	2	1	-	50	50	100	3 Hrs
BMEC-3574	Personality Development-I	0	0	2	0	-	100	-	100	3 Hrs
BMEC-3575	Industrial Training (at the end of 4 th sem.)	0	0	0	1	-	50	50	100	3 Hrs
	Ор	en l	Elect	ive (Any O	ne)	L	I		
	Human Resource Management	3	0	-	3	3	60	40	100	3 Hrs
	Material Management	3	0	-	3	3	60	40	100	3 Hrs
вмес-3504	Solar Energy	3	0	-	3	3	60	40	100	3 Hrs
	Optimization Techniques	3	0	-	3	3	60	40	100	3 Hrs

FIFTH SEMESTER

Total	18	1	8	23	19		1100	33 Hrs

SIXTH SEMESTER

Subjec t			Contact Hours/Wee k		Credi t	Contac t Hrs.	Evaluation Scheme (% of Total Marks)			Exam Duration (Hours)
Code	Title	L	Т	Р			Interna l	Externa l	Total	
BMEC-3601	Mechanical Measurements & Metrology	3	0	0	3	3	40	60	100	3 Hrs
BMEC-3602	Design of Machine Elements - II	4	1	0	5	5	40	60	100	3 Hrs
BMEC-3603	Heat Transfer	3	1	0	4	4	40	60	100	3 Hrs
BMEC-3604	Fluid Machinery	3	1	0	4	4	60	40	100	3 Hrs
BMEC-3671	Mechanical Measurements & Metrology Lab	0	0	2	1	-	50	50	100	3 Hrs
BMEC-3672	Heat Transfer Lab	0	0	2	1	-	50	50	100	3 Hrs
BMEC-3673	Fluid Machinery Lab	0	0	2	1	-	50	50	100	3 Hrs
BMEC-3674	Personality Development - II	0	0	2	0	-	50	50	100	3 Hrs
BMEC-3675	Minor Project	0	0	2	1	-	100	0	100	3 Hrs
	Departmen	tal	Elect	tive (Courses	s (Any o	ne)			
BMEC-3605	I.C Engines	3	0	0	3	3	40	60	100	3 Hrs
BMEC-3606	Non Destructive Testing	3	0	0	3	3	40	60	100	3 Hrs
BMEC-3607	Product Design and Development	3	0	0	3	3	40	60	100	3 Hrs

BMEC-3608	Mechatronics	3	0	0	3	3	40	60	100	3 Hrs
BMEC-3609	Tool Design	3	0	0	3	3	40	60	100	3 Hrs
BMEC-3610	Statistical & Numerical Methods	3	0	0	3	3	40	60	100	3 Hrs
Total		16	3	10					1000	30 Hrs

SEVENTH SEMESTER

Subjec t			Contact Hours/Wee k		Credi t	Contac tHrs.	Ev Scho Tot	Evaluation Scheme (% of Total Marks)		Exam Duration (Hours)
Code	Title	L	Т	Р			Interna I	Externa	Total	
BMEC-4701	Industrial Engineering	3	-	-	3	3	40	60	100	3 Hrs
BMEC-4702	Operation Research	3	1	-	4	4	40	60	100	3 Hrs
BMEC-4703	Refrigeration & Air Conditioning	3	1	-	4	4	40	60	100	3 Hrs
BMEC-4704	Mechanical Vibrations	3	-	-	3	-	40	60	100	3 Hrs
BTME-4704	Refrigeration & Air Conditioning Lab.	-	-	2	1	2	60	40	100	3 Hrs
BTME-4705	Mechanical Vibrations Lab.	-	_	2	1	2	60	40	100	3 Hrs
BTME-4706	Major Project	-	-	6	3	6	60	40	100	3 Hrs
	Departmo	ent l	Elect	ive (Courses	(Any o	ne)			
BTME-4711	Automotive Control	3	-	-	3	3	40	60	100	3 Hrs
BTME-4712	Non Traditional Machining	3	-	-	3	3	40	60	100	3 Hrs
BTME-4713	Industrial Tribology	3	-	-	3	3	40	60	100	3 Hrs
BTME-4714	Finite Element Methods	3	-	-	3	3	40	60	100	3 Hrs
BTME-4715	Statistical Quality Control	3	-	-	3	3	40	60	100	3 Hrs
BTME-4716	Human Resource Management	3	-	-	3	3	40	60	100	3 Hrs
BTME-4717	Automotive Aerodynamics	3	-	-	3	3	40	60	100	3 Hrs
BTME-4718	Electric & Hybrid Vehicles	3	-	-	3	3	40	60	100	3 Hrs
BTME-4719	Additive Manufacturing	3	-	-	3	3	40	60	100	3 Hrs

BTME-4721	Total Quality Management	3	-	-	3	3	40	60	100	3 Hrs
BTME-4721 Operation Research		3	-	-	3	3	40	60	100	3 Hrs
BTME-4722	Material Management	3	-	-	3	3	40	60	100	3 Hrs
BTME-4723	Solar Energy	3	-	-	3	3	40	60	100	3 Hrs
BTME-4724	Optimization Techniques	3	-	-	3	3	40	60	100	3 Hrs
Total			2	10	22	27			800	24Hrs

EIGHT SEMESTER

Subject		Contact Hours/Wee k		Credi t	Contac tHrs.	Ev Sch Tot	valuation eme (% o al Marks	of S)	Exam Duration (Hours)	
Code	Title	L	Т	Р			Interna l	Externa l	Total	
	Core Courses									
BTME-4801	Software Training	-	-	-	6	-	100	200	300	3 Hrs
BTME-4802	Industrial Training				10		200	300	500	3 Hrs
Total		-	-	-	16	-		500	800	6 Hrs

SECTION 6

Detailed Syllabus with Course Outcomes

SYLLABUS

SEMESTER-III

SUBJECT TITLE: STRENGTH OF MATERIALS – I SUBJECT CODE: BMEC-2301 SEMESTER: 3rd CONTACT HOURS/WEEK: Lecture (L) Tuto

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

Course Objective/s and Expected Outcome/s: The course is designed to understand the basic concepts of stress, strain and their variations due to different type of loading. The concept of Mechanical properties, Poisson's ratio, bulk modulus, elastic modulus, modulus of rigidity, combined stress and strain, principal stress, principal plane, bending moment and shear force in beam under various loading conditions, Understanding of torsional shear stress in solid and hollow shaft; principal and maximum shear stress in a circular shaft subjected to combined stresses, stresses in struts and columns subjected to axial load; bending stress, slope and deflection under different loading and supporting conditions. After the study of this course, a student is expected to analyze different stresses, strains and deflection for designing a simple mechanical element under various loading conditions.

S.	Content	Contact				
No.		Hours				
1	Unit –I	12 Hrs				
	Simple, Compound Stresses and Strains: Stress and Strain and their					
	types, Hook's law, longitudinal and lateral strain, Poisson's ratio, stress-					
	strain diagram for ductile and brittle materials, extension of a bar due to					
	without and with self-weight, bar of uniform strength, stress in a bar,					
	elastic constants and their significance, relation between elastic					
	constants, Young's modulus of elasticity, modulus of rigidity and bulk					
	modulus. Temperature stress and strain calculation due to axial load and					
	variation of temperature in single and compound bars. Two dimensional					
	stress system, stress at a point on a plane, principal stresses and principal					
	planes, Mohr's circle of stress ellipse of stress and their applications.					
	Generalized Hook's law, principal stresses related to principal strains.					
	Theory related to testing of material with universal testing machine,					
	hardness and impact strength.					
2	Unit –II	18 Hrs				
	Bending Moment (B.M) and Shear Force (S.F) Diagrams: S.F and					
	B.M definitions; relation between load, shear force and bending					
	moment; B.M and S.F diagrams for cantilevers, simply supported beams					
	with or without overhangs, and calculation of maximum B.M and S.F					
	and the point of contra flexure under the following loads:					
	a) Concentrated loads					

3	 b) Uniformity distributed loads over the whole span or part of span c) Combination of concentrated and uniformly distributed load d) Uniformly varying loads Application of moments Unit –III Bending Stresses In Beams: Assumptions in the simple bending theory; derivation of formula and its application to beams of rectangular, circular and channel, I and T- sections. Combined direct and bending stresses in afore-mentioned sections, composite / flitched beams. Unit –IV Torsion: Derivation of torsion equation and its assumptions and its application to the hollow and solid circular shafts. Torsional rigidity, combined torsion and bending of circular shafts; principal stress and maximum shear stresses under combined 	10 Hrs
	loading of bending and torsion.	
4	 Unit -V Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications. Unit -VI Slope and deflection: Relationship between moment, slope and deflection; method of integration, Macaulay's method, moment area method and use of these methods to calculate slope and deflection for the following: a) Cantilevers b) Simply supported beams with or without overhang c) Under concentrated loads, uniformly distributed loads or combination of concentrated & uniformly distributed loads. 	10 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2301.1	Able to understand the theory of elasticity including strain/displacement
		and hooke's law relationships
CO2	BMEC-2301.2	Determine the resistance and deformation in machine members subjected
		to axial, flexural and tensional loads
CO3	BMEC-2301.3	Able to analyze the stresses and deflections of beams under various
		loading conditions
CO4	BMEC-2301.4	Able to obtain solutions to column buckling and plate problems

Text Books:

- 1. D.S. Bedi, Strength of Materials, Khanna Book Publishing Company, 1998, Reprint-2016
- 2. E.P. Popov, Mechanics of Materials-(SI Version), Prentice Hall India.,2006
- 3. R.S Lehri and A.S. Lehri, Strength of Materials, Kataria and Sons., 1998
- 4. S.S. Rattan, Strength of Materials, Tata McGraw Hill., 1996

Reference Books:

- 1. Timoshenko and Young, Elements of Strength of Materials, East West Press (EWP), 2014
- 2. James M Gere and Barry J. Goodno, Strength of Materials, Cengage Learning., 2006

Journals:

- 1. Journal of the Mechanics and Physics of Solids (Link: https://www.sciencedirect.com/journal/journal-of-the-mechanics-and-physics-of-solids)
- 2. Thin Solid Films (Link: https://www.sciencedirect.com/journal/thin-solid-films)

SUBJECT TITLE: THEORY OF MACHINES-I SUBJECT CODE: BMEC-2302 SEMESTER: 3rd CONTACT HOURS/WEEK: Lecture (L)

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

Course Objective/s & Expected Outcome/s: The course under Theory of Machine-I has been designed to cover the basic concepts of kinematic aspects of mechanical machines and major parts used in running of the machines. The students will understand the basic concepts of machines and able to understand constructional and working features of important machine elements. The students should be able to understand various parts involved in kinematics of machines for different applications. The students shall also be able to understand requirements of basic machine parts which would help them to understand the design aspects of the machine parts

S.No.	Contents	Contact
		Hours
1	Unit –I	15 Hrs
	Basic Concept of machines: Link, Mechanism, Kinematic Pair and	
	Kinematic Chain, Principles of Inversion, Inversion of a Four Bar Chain,	
	Slider-Crank-Chain and Double Slider-Crank-Chain. Graphical and	
	Analytical methods for finding: Displacement, Velocity, and Acceleration of mechanisms (including Corliolis Components).	
	Advance problems on velocity diagrams (relative velocity method,	
	instantaneous center method). Kennedy theorem, Klien's construction,	
	Ritterhaus's construction, Bennett's construction, Acceleration diagram and	
	advanced problems involving their application.	
	Unit –II	
	Lower and higher Pairs: Universal Joint, Calculation of maximum Torque,	
	Steering Mechanisms including Ackerman and Davis approximate steering	
	mechanism, Engine Indicator, Pentograph, Straight Line Mechanisms,	
	Introduction to Higher Pairs With Examples	
2	Unit –III	6 Hrs
	Belts, Ropes and Chains: Material & Types of belt, Flat and V-belts, Rope	
	& Chain Drives, IdlePulley, Intermediate or Counter Shaft Pulley, Angle	
	and Right Angle Drive, Quarter Turn Drive, Velocity Ratio, Crowning of	
	Pulley, Loose and fast pulley, stepped or cone pulleys, ratio of tension on	
	tight and slack side of belts, Length of belt, Power transmitted by belts	
	including consideration of Creep and Slip, Centrifugal Tensions and its	
	effect on power transmission	

3	Unit –IV	14 Hrs
	Cams: Types of cams and follower, definitions of terms connected with	
	cams. Displacement, velocity and acceleration diagrams for cam followers.	
	Analytical and Graphical design of cam profiles with various motions	
	(SHM, uniform velocity, uniform acceleration and retardation, cycloidal	
	Motion). Analysis of follower motion for circular, convex and tangent cam	
	profiles.	
	Unit –V	
	Friction Devices: Concepts of friction and wear related to bearing and	
	clutches. Types of brakes function of brakes. Braking of front and rear tyres	
	of a vehicle. Determination of braking capacity, Types of dynamometers,	
	(absorption, and transmission).	
4	Unit –VI	10 Hrs
	Flywheels: Turning moment and crank effort diagrams for reciprocating	
	machines' Fluctuations of speed, coefficient of fluctuation of speed and	
	energy, Determination of mass and dimensions of flywheel used for engines	
	and punching machines.	
	Unit –VII	
	Governors: Function, types and characteristics of governors. Watt, Porter	
	and Proell governors. Hartnell and Willson-Hartnell spring loaded	
	governors. Numerical problems related to these governors. Sensitivity,	
	stability, isochronisms and hunting of governors. Governor effort and	
	power, controlling force curve, effect of sleeve friction.	ļ

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2302.1	Students will be able to analyze planer mechanisms terms of DoF, Gross
		Motion, Velocity and Acceleration of Points on Link / Links, Forces acting on links and joints
CO2	BMEC-2302.2	Synthesize simple mechanisms
CO3	BMEC-2302.3	Analyze and synthesis cams, clutches, and flywheel
CO4	BMEC-2302.4	Analyze and determine key kinematic parameters for friction mechanisms

Text Books:

1. S. S. Rattan, Theory of Machines, Tata McGraw Hill, New Delhi. 2010

- 2. Thomas Beven, Theory of Machines, Longman's Green & Co., London. 2010
- 3. Green, Theory of Machines, Blackie & Sons, London 2012

Reference Books:

- 1. JagdishLal, Theory of Mechanisms & Machines, Metropolitan Book Co. 2006
- 2. Uicker, J. J., Pennock, G. R., Shigley, J. E., &Mccarthy, J. M. (2003). Theory of machines and mechanisms (Vol. 768). New York: Oxford University Press.
- 3. V.P. Singh, Theory of Machines DhanpatRai. 2008

Journals:

- 1. Mechanism and Machine Theory (<u>https://www.sciencedirect.com/journal/mechanism-and-machine-theory</u>)
- 2. Journal of Mechanisms (https://www.sciencedirect.com/journal/journal-of-mechanisms)

SUBJECT TITLE: MACHINE DRAWING WITH AUTO CADSUBJECT CODE: BMEC-2303SEMESTER: 3rdCONTACT HOURS/WEEK:Lecture (L)Tutorial (T)

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
1	0	4	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam:3 Hrs

Course Objective/s and Expected Outcome/s: The objective of this course is to make students understand the principles and requirements of production drawings and learning how to assemble and disassemble important parts used in major mechanical engineering applications. After going through this course, the student shall be able to understand the drawings of mechanical components and their assemblies along with their utility for design of components

S.	Contents	Contact
No.		Hours
1	Unit –I	08 Hrs
	drawing Sectioning and conventional representation Dimensioning	
	symbols of standard tolerances. Machining Symbols, introduction and	
	Familiarization of Code IS: 296	
2	Unit –II	12 Hrs
	Fasteners: Various types of screw threads, types of nuts and bolts,	
	screwed fasteners, welding joints and riveted joints	
3	Unit –III	35 Hrs
	Assembly and Disassembly:	
	a) Couplings: Solid or Rigid Coupling, Protected Type Flange	
	coupling, Pin type flexible coupling, muff coupling, Oldham,	
	universal coupling, claw coupling, cone friction clutch, free	
	hand sketch of single plate inclion clutch.	
	b) Knuckle and coller joints	
	union joint, hydraulic anexpansion joint	
	d) IC Engine Parts: Piston, connecting rod	
	e) Boiler Mountings: Steam stop valve, feed check valve, safety valve,	
	blow off cock.	
	f) Bearings: Swivel bearing, thrust bearing, Plummer block, angular	
	plumber block	
	g) Miscellaneous: Screw Jack, Drill Press Vice, Crane hook, Tool	
	Post, Tail Stock, Drilling Jig.Drafting of simple mechanical	
	components on computer.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1 BMEC-2303.1 To make students understand the principles and requirements of production

		drawings and learning how to assemble and disassemble important parts used in major mechanical engineering applications
CO2	BMEC-2303.2	To understand the drawings of mechanical components and their
		assemblies along with their utility for design of components
CO3	BMEC-2303.3	Draw the projections of various mechanical components in terms of top,
		side and front views
CO4	BMEC-2303.4	Draw the projections of various miscellaneous components in terms of top,
		side and front views

Text Books:

- 1. Ajit Singh, Machine Drawing (including Auto CAD), Tata McGraw Hill., 2006
- 2. A Text Book of Machine Drawing by R. K. Dhawan, S. Chand and Co. Ltd., 1998
- 3. N.D. Bhatt, Machine Drawing, Charotar publications., 1995

Reference Books:

- 1. N. Sidheshwar, Machine Drawing, Tata McGraw Hill. 2002
- 2. P.S. Gill, Machine Drawing, BD Kataria and Sons.2000
- 3. V Lakshmi Narayanan and Mathur, Text-book of Machine Drawing. 2004

Journals:

- 1. Computer vision, graphics, and image processing (https://www.sciencedirect.com/journal/computer-vision-graphics-and-image-processing)
- 2. Computer Graphics (https://link.springer.com/book/10.1007/978-4-431-68057-4)

SUBJECT TITLE: APPLIED THERMODYNAMICS-ISUBJECT CODE: BMEC-2304SEMESTER: 3rdCONTACT HOURS/WEEK:Lecture (L)Tutor

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam:3 Hrs

Course Objective/s and Expected Outcome/s: This course is designed for comprehensive study of combustion and thermal aspects in internal combustion engines, steam power plants and its allied components. This will enable the students to understand combustion phenomenon and thermal analysis of steam power plant components. The students will be able to identify, track and solve various combustion problems and evaluate theoretically the performance of various components involved in steam power plants and internal combustion engines.

S.No.	Contents	Contact
1	Unit I	Hours
1	Combustion: Combustion Equations (Stoichiometric and non-	10 118
	Stoichiometric) Combustion problems in Boilers and IC	
	engines/Calculations of air fuel ratio. Analysis of products of combustion.	
	Conversion of volumetric analysis into gravimetric analysis and vice-	
	versa, Actual weight of air supplied, Use of mols, for solution of	
	combustion problems, Heat of formation, Enthalpy of formation,	
	Enthalpy of reaction, Adiabatic flame temperature.	
	Unit –II	
	IC Engines Introduction: Actual Engine Indicator diagrams and valve-	
	timing diagrams for twostroke and four stroke S.I. and C.I. Engines;	
	Construction and Working Principle of Wankel rotary engine;	
	Principle of simple carburator, Injection systems in Diesel and Petrol	
	Engines(Direct Injection, MPFI in SI and CI Engines, respectively).	
	Essential requirements for Petrol and Diesel Fuels. Theory of combustion	
	In SI and CI Engines; Various stages of combustion; Pressure-time/crank	
	- Angle diagrams, various phenomenon such as turbulence, squish and	
	Theory of knocking (is_detonation) in SI and CI Engines: Effect of	
	engine variables on the Delay Period in SI and CI engines. Effect of	
	various parameters on knock in SI and CI Engines: Methods employed to	
	reduce knock in SI and CI Engines: Octane and Cetane rating of fuels:	
	Knockmeter; Dopes and inhibitors; Performance curves/maps of SI and	
	CI Engines; Effect of knocking on engine performance; Effect of	
	compression ratio and air-fuel ratio on power and efficiency of engine;	
	Variation of engine powerwith altitude; Supercharging and turbo	
	charging of SI and CI Engines; Advantages and applications of	
	supercharging; Emissions from SI and CI Engines and methods to	
	reduce/control them. Logarithmic plotting of PV-diagrams. High speed	

	Engine Indicators.	
	Dual cycles, Brayton cycle, Thermodynamics relations: Gibbs and	
	Helmholtz function-Maxwell's relations-Clapeyron equations-general	
	relations of properties	40.11
2		10 Hrs
	Properties of Steam	
	Pure substance; Steam and its formation at constant pressure: wet, dry,	
	saturated and super-heated steam; Sensible heat(enthalpy), latent heat and	
	total heat (enthalpy) of steam; dryness fraction and its determination;	
	degree of superneat and degree of sub-cool; Entropy and internal energy	
	of steam; Use of Steam Tables and Mollier Chart; Basic thermodynamic	
	processes with steam (isochoric, isobaric, isothermal, isotherpic and	
	adiabatic process) and their representation on 1-5 Chart and Mollier	
	Charts(n-s diagrams). Significance of Mollier Charts.	
	Unit -1V Steam Concreters Definition Classification and Applications of	
	Steam Generators: Working and constructional details of fire tube and	
	water-tube boilers: (Cochran Lancashire Babcock and Wilcox boilers):	
	Merits and demerits of fire tube and water tube boilers: Modern high	
	pressure boilers (Benson boiler I a Mont boiler) and Super critical boilers	
	(Once through boilers. <i>Tower type</i>): Advantages of forced circulation:	
	Description of boiler mountings and accessories: Different types of	
	Safety Valves. Water level indicator, pressure gauge, Fusible plug. Feed	
	pump. Feed Check Valve. Blow-off Cock. Steam Stop-Valve.	
	Economiser, Super-heater: Air pre-heater and Steam accumulators: Boiler	
	performance: equivalent evaporation, boiler efficiency.	
3	Unit –V	12 Hrs
	Vapour Power Cycle Carnot Cycle and its limitations; Rankine steam	
	power cycle, Ideal andactual; Mean temperature of heat addition; Effect of	
	pressure, temperature and vacuum on Rankine Efficiency; Rankine Cycle	
	Efficiency and methods of improving Rankine efficiency: Reheat cycle,	
	Bleeding (feed-water-heating), Regenerative Cycle, Combined reheat-	
	regenerative cycle; Ideal working fluid; Binary vapour cycle, Combined	
	power and heating cycles.	
	Unit –VI	
	Steam Nozzles - Definition, types and utility of nozzles; Flow of steam	
	through nozzles; Conditionfor maximum discharge through nozzle;	
	Critical pressure ratio, its significance and its effect on discharge; Area of	
	throat and at exit for maximum discharge; Effect of friction; Nozzle	
	efficiency; Convergent and convergent-divergent nozzles; Calculation of	
	Nozzle dimensions (length and diameters of throat and exit);	
	Supersaturated (or metastable) flow through nozzle.	
	Unit –VII	
	Steam Turbines Introduction; Classification; Impulse versus Reaction	
	turbines. Simple impulse turbine: pressure and velocity variation,	
	velocity diagrams/triangles; Combined velocitydiagram/triangle and	
	calculations for force, axial thrust, work, power, blade efficiency, stage	
	efficiency, maximum work and maximum efficiency, effect of blade	

	friction on velocity diagram, effect of speed ratio on blade efficiency,	
	condition for axial discharge.	
4	Unit –VIII	12 Hrs
	De Laval Turbine : Compounding of impulse turbines: purpose, types and	
	pressure and velocityvariation, velocity diagrams/triangles, combined	
	velocity diagram/triangle and calculations for force, axial thrust, work,	
	power, blade efficiency, stage efficiency, overall efficiency and relative	
	efficiency.	
	Unit –IX	
	Impulse-Reaction Turbine: pressure and velocity variation, velocity	
	diagrams/triangles, Degreeof reaction, combined velocity	
	diagram/triangle and calculations for force, axial thrust, work, power,	
	blade efficiency, stage efficiency, overall efficiency and relative	
	efficiency, maximum workand maximum efficiency; Calculations of	
	blade height; Multistaging: Overall efficiency and relative efficiency;	
	Reheating, Reheat factor and condition curve; Losses in steam turbines;	
	Backpressure and extractionturbines;Co-	
	generation; Economicassessment; Governing of steam turbines.	
	Unit –X	
	Steam Condensers Function; Elements of condensing unit; Types of	
	condensers; Dalton's law ofpartial pressures applied to the condenser	
	problems; Condenser and vacuum efficiencies;	
	Cooling towers: function, types and their operation.	

COURSE OUTCOMES: On completion of this course, the students will be able to

-		
CO1	BMEC-2304.1	To understand combustion phenomenon and thermal analysis of steam
		power plant components.
CO2	BMEC-2304.2	Able to understand the fundamental of the first and second laws of
		thermodynamics and their application to a wide range of systems.
CO3	BMEC-2304.3	Familiar with the fundamental of the air standard cycles and their
		applications
CO4	BMEC-2304.4	Have Knowledge of the operation, construction and design of various
		components of power plants

Text Books:

1. R. Yadav, Sanjay and Rajay, Applied Thermodynamics, Central Publishing House, 1992.

2. J.S. Rajadurai, Thermodynamics and Thermal Engineering, New Age International (P) Ltd. Publishers. 1996

3. Palmer, D. A. (2019). CRC handbook of applied thermodynamics.CRC press.

4. D.S. Kumar and V.P. Vasandani, Heat Engineering, Metropolitan Book Co. Pvt. Ltd.2002

Reference Books:

- 1. K. Soman, Thermal Engineering, PHI Learning Pvt. Ltd. 2006
- 2. G. Rogers and Y. Mayhew, Engineering Thermodynamics, Pearson. 2008
- 3. W.A.J. Keartan, Steam Turbine: Theory and Practice, ELBS Series. 2007
- 4. Heywood, Fundamentals of IC Engines, McGraw Hill. 2010

5. V. Ganeshan, Internal Combustion Engines, Tata McGRaw Hill. 2006

Journals:

- 1. Progress in Energy and Combustion Science (https://www.sciencedirect.com/journal/progress-in-energy-and-combustion-science)
- 2. Fuel (https://www.sciencedirect.com/journal/fuel)

SUBJECT TITLE: MANUFACTURING PROCESSES–I SUBJECT CODE: BMEC-2305 SEMESTER: 3rd CONTACT HOURS/WEEK: Lecture (L) Tutoria

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam:3 Hrs

Course Objective/s and Outcome/s: This course is designed to provide students with an overviewof a wide variety of manufacturing processes for processing of engineering materials. The students will learn principles, operations and capabilities of various metal casting and metal joining processes. They will also learn about the defects, their causes and remedies in these processes. Upon completion of the course, the students should have the ability to understand the importance of the manufacturing processes and to select a suitable metal casting and metal joining processes to fabricate an engineering product.

S.No.	Contents				
		Hours			
1	Unit-I Introduction: Classification of manufacturing processes,	5 Hrs			
	selection criteria for manufacturing processes, general trends in				
	manufacturing				
2	Unit -II Casting Processes: Introduction to metal casting. patterns:	15 Hrs			
	types, materials and allowances. Moulding materials: moulding sand				
	compositions and properties, sand testing, types of moulds, moulding				
	machines. Cores: function, types, core making process, core-prints,				
	chaplets. Elements of gating system and risers and their design. Design				
	considerations of castings. Melting furnaces, cupola furnace, charge				
	calculations, induction furnaces. Casting processes: sand casting, shell				
	mould casting, investment casting, permanent mould casting, full mould				
	casting, vacuum casting, die casting, centrifugal casting, and continuous				
	casting. Metallurgical considerations in casting, Solidification of metals				
	and alloys, directional solidification, segregation, nucleation and grain				
	growth, critical size of nucleus. Cleaning and finishing of castings				
3	Unit–III Welding Processes: Introduction and classification of welding	15 Hrs			
	processes, to welding processes, weldability, welding terminology,				
	general principles, welding positions, and filler metals. Gas welding:				
	principle and practice, oxy-acetylene welding equipment, oxy-hydrogen				
	welding. Flame cutting. Electric arc welding: principle, equipment,				
	relative merits of AC & DC arc welding. Welding processes: manual				
	metal arc welding, MIG welding, IIG welding, plasma arc welding,				
	submerged arc welding. Welding arc and its characteristics, arc stability,				
	and arc blow. I nermal effects on weldment: heat affected zone, grain size				
	and its control. Electrodes: types, selection, electrode coating ingredients				
	and their function. Resistance welding: principle and their types i.e. spot,				
	seam, projection, up-set and Hash. Spot welding machine. Advanced				
	welding processes: triction welding, triction stir welding, ultrasonic				

	welding, laser beam welding, plasma arc welding, electron beam welding, atomic hydrogen welding, explosive welding, thermit welding, and electro slag welding. Considerations in weld joint design. Other joining processes: soldering, brazing, braze welding. Friction stir spot welding, adhesive bonding.	
4	Unit–IV Inspection and Testing: Casting defects, their causes and remedies. Welding defects, their causes and remedies. Destructiveand non-destructive testing: visual inspection, x-ray radiography, magnetic particle inspection, dye penetrate test, ultrasonic inspection, eddy current testing, hardness testing, and micro hardness testing.	10 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2305.1	To provide students with an overview of a wide variety of manufacturing		
		processes for processing of engineering materials		
CO2	BMEC-2305.2	To learn principles, operations and capabilities of various metal casting		
		and metal joining processes		
CO3	BMEC-2305.3	To learn about the casting defects, their causes and remedies in these		
		processes		
CO4	BMEC-2305.4	To analyze the inspection and testing of various mechanical materials		

Text Books:

1. Campbell Jr, F. C. (Ed.). (2003). Manufacturing processes for advanced composites. elsevier.

- 2. Manna, A Textbook of Manufacturing Science and Technology, PHI Publishers. 2001
- 3. H.S. Shan, Manufacturing Processes, Vol.I., Pearson Publishers., 2002

4. P. N. Rao, Manufacturing Technology, Foundry, Forming & Welding, Tata McGraw Hill. 2006

Reference Books:

1. R.S. Parmar , Welding Engineering & Technology, Khanna Publishers 1999.

2. SeropeKalpakjian and Steven R. Schmid, Manufacturing Engineering and Technology, Pearson Publishers. 2008

3. Swift, K. G., & Booker, J. D. (2013). Manufacturing process selection handbook.Butterworth-Heinemann.

Journals:

- 1. Powder Technology (https://www.sciencedirect.com/journal/powder-technology)
- 2. Materials Science and Engineering: R: Reports (https://www.sciencedirect.com/journal/materials-science-and-engineering-r-reports)

SUBJECT TITLE: ENGINEERING MATERIALS & METALLURGYSUBJECT CODE: BMEC-2306SEMESTER: 3rdCONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practice

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s and Outcome/s: This course is designed to develop fundamental concepts of crystallography, phase transformation and heat treatment processes. The students will learn the atomic structure of metals, imperfections, diffusion mechanisms and theories of plastic deformation. They will also understand equilibrium diagrams, time-temperature transformation curves and heat treatment processes. Upon completion of the course, the students will be able to understand the concepts of crystal structure, microstructure and deformation. They will also be able to understand the phase diagrams which are useful for design and control of heat treating processes.

S.No.	Contents	Contact
		Hrs
1	Unit –I Crystallography: Atomic structure of metals, atomic bonding in solids, crystal structures, crystallattice of body centered cubic, face centered cubic, closed packed hexagonal; crystalline and non crystalline materials; crystallographic notation of atomic planes; polymorphism and allotropy; imperfection in solids: theoretical yield strength, point defects, line defects and dislocations, interfacial defects, bulk or volume defects. Diffusion: diffusion mechanisms, steady-state and non-steady-state diffusion, factors affecting diffusion. Theories of plastic deformation, recovery, re-crystallization.	12 Hrs
2	Unit –II Phase Transformation: General principles of phase transformation in alloys, phase rule and equilibrium diagrams, Equilibrium diagrams of Binary systems. Iron carbon equilibrium diagram and various phase transformations. Time temperature transformation curves (TTT curves): fundamentals, construction and applications.	15 Hrs
3	Unit –III Heat Treatment : Principles and applications. Processes viz. annealing, normalizing, hardening, tempering. Surface hardening of steels: Principles of induction and oxyacetylene flame hardening. Procedure for carburising, nitriding and cyaniding. Harden-ability: determination of harden-ability. Jominy end-quench test. Defects due to heat treatment and their remedies; effects produced by alloying elements. Composition of alloy steels.	10 Hrs
4	Unit –IV	8 Hrs

Ferrous Metals and Their Alloys: Introduction, classification, composition of alloys, effect of alloying elements (Si, Mn, Ni, Cr, Mo, W, Al) on the structures and properties of steel.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2306.1	The students will learn the atomic structure of metals, imperfections,
		diffusion mechanisms and theories of plastic deformation
CO2	BMEC-2306.2	To understand equilibrium diagrams, time-temperature transformation
		curves and heat treatment processes
CO3	BMEC-2306.3	Analyze the various properties of Engineering materials
CO4	BMEC-2306.4	Determine the various stages of materials along with the method of cooling

Text Books:

- 1. B. Zakharov, Heat Treatment of Metals, University Press. 2006
- 2. T. Goel and R.S. Walia, Engineering Materials & Metallurgy. 2002
- 3. Sidney H Avner, Introduction to Physical Metallurgy, Tata Mcgraw-Hill. 2015

Reference Books:

- 1. V. Raghavan, Physical Metallurgy: Principles and Practice, PHI Learning. 2004
- 2. Y. Lakhin, Engineering Physical Metallurgy, Mir Publishers. 2005

- 1. Advanced Engineering Materials (https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.200800091)
- 2. Metallurgical and Materials Transactions A (https://www.springer.com/journal/11661)

SUBJECT TITLE: STRENGTH OF MATERIALS LAB SUBJECT CODE: BMEC-2371 SEMESTER: 3rd CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S. No.	Contents	Contact Hours
1	To perform tensile test in ductile and brittle materials and to draw	2 Hrs
	stress-strain curve and to determine various mechanical	
	properties.	
2	To perform compression test on Cast Iron.	2 Hrs
3	To perform any one hardness tests (Rockwell, Brinell&Vicker's test).	2 Hrs
4	To perform impact test to determine impact strength.	2 Hrs
5	To perform torsion test and to determine various mechanical properties	2 Hrs
6	To perform Fatigue test on circular test piece.	2 Hrs
7	To perform bending test on beam and to determine the Young's	2 Hrs
	modulus and modulus of rupture.	
8	Determination of Bucking loads of long columns with different end	2 Hrs
	conditions	
9	To evaluate the stiffness and modulus of rigidity of helical coil spring.	2 Hrs

CO1	BMEC-2371.1	Perform the tensile test on mild steel specimen along with its stress-strain
		plot
CO2	BMEC-2371.2	Perform the compression and hardness test on specimen i.e. cast iron, mild
		steel, etc.
CO3	BMEC-2371.3	Evaluate the torsion and fatigue test on specimens for determining its
		durability
CO4	BMEC-2371.4	Perform other test such as fatigue test, bending test, etc. on the specimen

SUBJECT TITLE: APPLIED THERMODYNAMICS LABSUBJECT CODE: BMEC-2372SEMESTER: 3rdCONTACT HOURS/WEEK:Lecture (L) Tutorial (
0 0

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50

External Assessment: 50

S.No.	Contents	Contact
1		Hours
	Study of construction and operation of 2 stroke and 4 stroke Petrol and	2 Hrs
	Diesel engines using actual engines or models	
2	To plot actual valve timing diagram of a 4 stroke petrol and diesel	2 Hrs
	engines and study its impact on the performance of engine	
3	Study of working, construction, mountings and accessories of various	2 Hrs
	types of boilers.	
4	To perform a boiler trial to estimate equivalent evaporation and	2 Hrs
	efficiency of a fire tube/ water tube boiler.	
5	Determination of dryness fraction of steam and estimation of brake	2 Hrs
	power, Rankine efficiency, relative efficiency, generator efficiency, and	
	overall efficiency of an impulse steam turbine and to plot a Willian's line	
6	Determine the brake power, indicated power, friction power and	2 Hrs
	mechanical efficiency of a multi cylinder petrol engine running at	
	constant speed (Morse Test).	
	Performance testing of a diesel engine from no load to full load (at	
	constant speed) for a single cylinder/ multi- cylinder engine in terms of	
	brake power, indicated power, mechanical efficiency and specific fuel	
	consumption.	
7	Performance testing of a petrol engine from no load to full load (at	2 Hrs
	constant speed) for a single cylinder/ multi- cylinder engine in terms of	
	brake power, indicated power, mechanical efficiency and specific fuel	
	consumption.	

	1	
CO1	BMEC-2372.1	Study the constructional features of different IC engine along with their
		valve timing diagrams
CO2	BMEC-2372.2	Study the constructional feature of different types of boilers and their
		practical applications
CO3	BMEC-2372.3	To determine the indicated power, friction power and mechanical
		efficiency of IC engine
CO4	BMEC-2372.4	To determine the performance testing of a petrol engine from no load to
		full load (at constant speed) for a single cylinder/ multi- cylinder

SUBJECT TITLE: INSTITUTIONAL TRAINING SUBJECT CODE: BMEC-2310 SEMESTER: 3 CONTACT HOURS/WEEK: Lecture (L) 7

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	2

Internal Assessment: 100

In this student has to submit a file of what they have did in their intuitional training

CO1	BMEC-2310.1	Understand the basics of workshop technology
CO2	BMEC-2310.2	Prepare a job related to carpentry shop, fitting shop, foundry shop
CO3	BMEC-2310.3	Prepare a job related to smithy shop, machine shop
C04	BMEC-2310.4	To study the basic circuits related to electrical and electronics shop

SYLLABUS

SEMESTER-IV

SUBJECT TITLE: STRENGTH OF MATERIALS-II SUBJECT CODE: BMEC-2401 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture (L) Tute

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s and Outcome/s: The course is designed to understand the concepts of strain energy, resilience, stress under impact loading; shear stress distribution in a beam of various cross sections; stress in curved cross sections; stresses in helical, spiral and leaf springs; stress and strain analysis of thin, thick cylinder and spheres subjected to internal pressure; and various failure theories. The outcome of the course is to enhance deep and vigorous understanding of stress analysis in various machine elements, so that a student can properly analyze and design a mechanical member from the strength point of view under various conditions.

S.No.	Contents	Contact
		Hours
1	Unit-I Strain energy: Introduction to strain energy, energy of dilation	12 Hrs
	and distortion. Resilience, stress due to suddenly applied loads.	
	Castigliano's and Maxwell's theorem of reciprocal deflection, Strain	
	gauges and rosette.	
	Unit-II Theories of failure: Maximum principal stress theory,	
	maximum shear stress theory, maximum principal strain theory, total	
	strain energy theory, shear strain energy theory. Graphical representation	
	and derivation of equation for these theories and their application to	
	problems related to two dimensional stress systems	
2	Unit-III Thin cylinders and spheres: Calculation of Hoop stress,	10 Hrs
	longitudinal stress in a cylinder, effects of joints, change in diameter,	
	length and internal volume. Principal stresses in sphere, change in	
	diameter and internal volume	
3	Unit–IV Thick cylinders: Derivation of Lame's equations, calculation of	14 Hrs
	radial, longitudinal and hoop stresses and strains due to internal pressure	
	in thick cylinders, compound cylinders, hub shrunk on solid shafts,	
	shrinkage allowance and shrinkage stress.	
	Unit-V Bending of curved beams: Calculation of stresses in cranes or	
	chain hooks, rings of circular and trapezoidal section, and chain links	
	with straight sides	
4	Unit-VI Shear stresses in beams: Shear stress distribution in	14 Hrs
	rectangular, circular, I, T and channel section built up beams. Shear	
	centre and its importance.	
	Unit-VII Rotational discs: Stresses in rotating discs and rims of	
	uniform thickness; disc of uniform strength.	

CO1	BMEC-2401.1	To enhance deep and vigorous understanding of stress analysis in various machine elements
CO2	BMEC-2401.2	To analyze and design a mechanical member from the strength point of view under various conditions
CO3	BMEC-2401.3	Apply the concept of failure theories for design
CO4	BMEC-2401.4	Analyze and design thin, thick cylinders and springs

Text Books:

- 1. D.S. Bedi, Strength of materials, Khanna book publishing company. 1998
- 2. G.H. Ryder, Strength of materials, Macmillan India Ltd. 2004
- 3. Mott, R. L., & Untener, J. A. (2021). Applied strength of materials. CRC Press.

Reference Books:

- 1. R.S Lehri and A.S. Lehri, Strength of materials, vol. 2, S. K. Kataria and Sons. 1998
- 2. S.S.Rattan, Strength of materials, Tata McGraw Hills. 2002
- 3. Timoshenko and Gere, Mechanics of materials, CBS publishers. 2013

- 1. Progress in Materials Science (https://www.sciencedirect.com/journal/progress-in-materialsscience)
- 2. International Journal of Numerical Methods in Engineering (https://onlinelibrary.wiley.com/toc/10970207/1999/45/7)

SUBJECT TITLE: THEORY OF MACHINES–IISUBJECT CODE: BMEC-2402SEMESTER: 4CONTACT HOURS/WEEK:Lecture (L)

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts of inertia forces & couples applied to reciprocating parts of a machine. Students should be able to understand balancing of masses and design of gears & gear trains. They will also gain knowledge of kinematic synthesis and different applications of gyroscopic effect.

S.No.	Contents	Contact Hours
1	 Unit–I Static force analysis:, Concept of force and couple, free body diagram, condition of equilibrium, static equilibrium of mechanism, methods of static force analysis of simple mechanisms. Power transmission elements, considerations of frictional forces. Unit–II Dynamic force analysis Determination of forces and couples for a crank, inertia of reciprocatingparts, dynamically equivalent system, analytical and graphical method, inertia force analysis of basic engine mechanism, torque required to overcome inertia and gravitational force of a four bar linkage. 	12 Hrs
2	Unit–III Balancing and Vibration: Necessity of balancing, static and dynamic balancing, balancing of single and multiple rotating masses, partial unbalanced primary force in an engine, balancing of reciprocating masses, and condition of balance in multi cylinder in line V-engines , concept of direct and reverse crank, balancing of machines, rotors, reversible rotors. Introduction to vibration- Terminologies- Single degree of freedom-damped and undamped- free and forced vibration Unit–IV Gears: Toothed gears, types of toothed gears and its terminology. Path of contact, arc of contact, conditions for correct gearing, forms of teeth, involutes and its variants, interference and methods of its removal. Calculation of minimum number of teeth on pinion/wheel for involute rack, helical, spiral, bevel and worm gears.	24 Hrs
3	Unit–V Gear Trains: Types of gear trains, simple, compound and epicyclic gear trains, problems involving their applications, estimation of velocity ratio of worm and worm wheel. Unit–VI Gyroscopic motion and couples: Effect on supporting and holding structures of machines. Stabilization of ships and planes, Gyroscopic effect on two and four wheeled vehicles and stone crusher.	14 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2402.1	To understand the basic concepts of inertia forces & couples applied to reciprocating parts of a machine
CO2	BMEC-2402.2	To understand balancing of masses and design of gears & gear trains.
CO3	BMEC-2402.3	To gain knowledge of kinematic synthesis and different applications of gyroscopic effect
CO4	BMEC-2402.4	Analyze the stability of automobile, naval ship and other related devices considering gyroscopic effect

Text Books:

- 1. S.S. Rattan, Theory of Machines, Tata Mc. Graw Hill. 2010
- 2. Reuleaux, F. (2013). The kinematics of machinery: outlines of a theory of machines. Courier Corporation.
- 3. John, Gordon, and Joseph, Theory of Machines and Mechanisms, Oxford University Press. 2010

Reference Books:

- 1. Hams Crone and Roggers, Theory of Machines. 2008
- 2. Shigley, Theory of Machines, McGraw Hill. 2006
- 3. V.P. Singh, Theory of Machines, DhanpatRai and Sons. 2008.

- 1. Engineering Failure Analysis (https://www.sciencedirect.com/journal/engineering-failureanalysis)
- 2. CIRP Annals (https://www.sciencedirect.com/journal/cirp-annals)

SUBJECT TITLE: FLUID MECHANICS SUBJECT CODE: BMEC-2403 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s and Expected Outcome/s: This course is designed for the under graduate Mechanical Engineering students to develop an understanding of the behavior of fluids at rest or in motion and the subsequent effects of the fluids on the boundaries as the mechanical engineers has to deal with fluids in various applications. This course will also develop analytical abilities related to fluid flow. It is expected that students will be able to have conceptual understanding of fluids and their properties, apply the analytical tools to solve different types of problems related to fluid flow in pipes, design the experiments effectively and do the prototype studies of different types of machines and phenomenon.

S.No.	Contents	Contact
		Hours
1	Unit–I Fundamentals of Fluid Mechanics: Introduction; Applications; Concept of fluid; Difference between solids, liquids and gases; Concept of continuum; Ideal and real fluids; Fluid properties: density, specific volume, specific weight, specific gravity, viscosity (dynamic and kinematic), vapour pressure, compressibility, bulk modulus, Mach number, surface tension and capillarity; Newtonian and non-Newtonian fluids. Unit–II Fluid Statics: Concept of static fluid pressure; Pascal's law and its engineering applications; Hydrostatic paradox; Action of fluid pressure on a plane submerged surface (horizontal, vertical and inclined): resultant force and centre of pressure; Force on a curved surface due to hydrostatic pressure; Buoyancy and flotation; Stability of floating and submerged bodies; Metacentric height and its determination; Periodic time of oscillation	12 Hrs
2	Unit–III Fluid Kinematics: Classification of fluid flows; Lagrangian and Euler flow descriptions; Velocity and acceleration of fluid particle; Local and convective acceleration; Normal and tangential acceleration; Path line, streak line, streamline and timelines; Flow rate and discharge mean velocity; One dimensional continuity equation; Continuity equation in Cartesian (x,y,z), polar (r, θ) and cylindrical (r, θ ,z) coordinates; Derivation of continuity equation using the Lagrangian method in Cartesian coordinates; Rotational flows: rotation, vorticity and circulation; Stream function and velocity potential function, and relationship between them; Flow net. Unit–IV Fluid Dynamics: Derivation of Euler's equation of motion in Cartesian coordinates, and along a streamline; Derivation of Bernoulli's equation (using principle of conservation of energy and equation of	10 Hrs

	motion) and its applications to steady state ideal and real fluid flows;	
	Representation of energy changes in fluid system (hydraulic and energy	
	gradient lines); Impulse momentum equation; Kinetic energy and	
	momentum correction factors; Flow along a curved streamline; Free and	
	forced vortex motions. Basics of compressible fluid flow, viscous flow of	
	incompressible fluids, boundary layer, and elementary turbulent flow.	
3	Unit-V Dimensional Analysis and Similitude: Need of dimensional	14 Hrs
	analysis; Fundamental and derived units; Dimensions and dimensional	
	homogeneity; Rayleigh's and Buckingham's π - method for dimensional	
	analysis; Dimensionless numbers (Reynolds, Froudes, Euler, Mach, and	
	Weber) and their significance; Need of similitude; Geometric, kinematic	
	and dynamic similarity; Model and prototype studies; Similarity model	
	laws.	
	Unit-VI Internal Flows: Laminar and Turbulent Flows: Reynolds	
	number, critical velocity, critical Reynolds number, hydraulic diameter,	
	flow regimes; Hagen – Poiseuille equation; Darcy equation; Head losses	
	in pipes and pipe fittings: Flow through pipes in series and parallel:	
	Concept of equivalent pipe: Roughness in pipes. Moody's chart. Bends	
	and fittings	
4	Unit-VII Pressure and Flow Measurement: Manometers: Pitot tubes:	14 Hrs
	Various hydraulic coefficients: Orifice meters: Venturi meters: Borda	
	mouthpieces: Notches (rectangular, V and Trapezoidal) and weirs:	
	Rotameters.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2403.1	To develop an understanding of the behavior of fluids at rest or in motion
		and the subsequent effects of the fluids on the boundaries as the
		mechanical engineers has to deal with fluids in various applications
CO2	BMEC-2403.2	To develop an ability to apply the Bernoulli equation to solve problems in
		fluid mechanics
CO3	BMEC-240.3	An ability to use potential flow theory to solve problems in fluid
		mechanics
CO4	BMEC-2403.4	An ability to perform dimensional analysis for problems in fluid mechanics

Text Books:

- 1. D.S. Kumar, Fluid Mechanics and Fluid Power Engineering, S.K. Kataria and Sons Publishers. 1996
- 2. S.K. Som, G. Biswas and S. Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill. 2004
- 3. C.S.P. Ojha, R. Berndtsson and P.N. Chandramouli, Fluid Mechanics and Machinery, Oxford University Press.2012

Reference Books:

1. Y.A. Cengel and J.M. Cimbala, Fluid Mechanics - Fundamentals and Applications, Tata McGraw Hill. 2012

- 2. B.R. Munson, D.F. Young, T.H. Okiishi and W.W. Huebsch, Fundamentals of Fluid Mechanics, John Wiley and Sons. 2014
- 3. J.F. Douglas and J.M. Gasiorek, J.A. Swaffield and L.B. Jack, Fluid Mechanics, Pearson 2014
- 4. V.L. Streeter, E.B. Wylie and K.W. Bedford, Fluid Mechanics, Tata McGraw Hill 2012

- 1. International Journal of Engineering Science (https://www.sciencedirect.com/journal/international-journal-of-engineering-science)
- 2. Journal of Hydrodynamics (https://www.springer.com/journal/42241

SUBJECT TITLE: APPLIED THERMODYNAMICS-II SUBJECT CODE: BMEC-2404 SEMESTER: 4th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives and Expected Outcomes: This course is designed for providing comprehensive understanding and thermodynamic analysis of positive displacement air compressors and thermal turbo machines used in power generation, aircraft, spacecraft and rocket propulsion. The students will be able to understand the thermodynamic working as well as performance of thermal turbo power machinery. They will also be able to select various thermal devices required for aforesaid applications.

S.No.	Contents	
		Hours
1	Unit–I Air Compressors : Classification of Air Compressors; Application of compressors and use of compressed air in industry and other places; Complete representation of compression process on P-v and T-s coordinates with detailed description of areas representing total work done and polytropic work done; Areas representing energy lost in internal friction, energy carried away by cooling water and additional flow work being done for un-cooled and cooled compression on T-S coordinates; Best value of index of compression; Isentropic, polytropic and isothermal efficiencies and their representation in terms of ratio of areas representing various energy transfers on T-s coordinates. Unit–II Reciprocating Air Compressors: Single stage single acting reciprocating compressor (with and without clearance volume): construction, operation, work input and best value of index of compression, heat rejected to cooling medium, isothermal, overall thermal, isentropic, polytropic, mechanical efficiency, effect of various parameters on volumetric efficiency, free air delivery; Multistage compressors: purpose and advantages, construction and operation, work input, heat rejected in intercoolers, minimum work input, optimum pressure ratio; isothermal, overall thermal, isentropic, polytropic, mechanical efficiency, more and efficiencies; Performance curves	12 Hrs
2	Unit-III Positive Displacement Rotary Compressor: Comparison of	10 Hrs
	rotary positive displacement compressors with reciprocating compressors;	
	Classification of rotary compressors; Construction, operation, work input	
	and efficiency of positive displacement type of rotary compressors like	
	Roots blower, Lysholm compressor and Vane type Blower.	
	Unit-IV Thermodynamics of Dynamic Rotary Compressors:	
	Applications of Steady Flow Energy Equation and thermodynamics of	

	dynamic(i.e., centrifugal and axial flow m/cs) compressors; Stagnation and	
	static values of pressure, Temperature and enthalpy etc. for flow through	
	dynamic rotary machines; Complete representation of compression process	
	on T-S coordinates with detailed description of areas representing total	
	work done polytronic work done ideal work required for compression	
	process areas representing energy lost in internal friction energy carried	
	process, areas representing energy lost in internal includit, energy carried	
	away by cooling water on 15 coordinates for an uncooled and cooled	
	compression; isentropic, polytropic, and isothermal efficiencies as ratios of	
	the areas representing various energy transfers on T-S coordinates	
3	Unit-V Centrifugal Compressors: Complete thermodynamic analysis of	14 Hrs
	centrifugal compressor stage; Polytropic, isentropic and isothermal	
	efficiencies; Complete representation of compression process in the	
	centrifugal compressor starting from ambient air flow through the suction	
	pipe, Impeller, Diffuser and finally to delivery pipe on T-S coordinates;	
	Pre-guide vanes and pre-whirl: Slip factor: Power input factor: Various	
	modes of energy transfer in the impeller and diffuser. Degree of Reaction	
	and its derivation: Energy transfer in backward forward and radial vanes:	
	Drassure coefficient as a function of alin factor. Efficiency and out coming	
	value it a model of the immediate Derivation of non dimensional	
	velocity prome from the imperier, Derivation of non-dimensional	
	parameters for plotting Surging and choking in centrifugal compressors.	
	Unit-VI Axial Flow Compressors: Different components of axial flow	
	compressor and their arrangement; Discussion on flow passages and simple	
	theory of aerofoil blading; Angle of attack; coefficients of lift and drag;	
	Turbine versus compressor blades; Velocity vector; Vector diagrams;	
	Thermodynamic analysis; Work done on the compressor and power	
	calculations; Modes of energy transfer in rotor and stator blade flow	
	passages; Detailed discussion on work done factor, degree of reaction,	
	blade efficiency and their derivations: Isentropic, polytropic and isothermal	
	efficiencies: Surging, Choking and Stalling in axial flow compressors:	
	Characteristic curves for axial flow compressor: Comparison of axial flow	
	compressor with centrifugal compressor and reaction turbine. Field of	
	compressor with centifugar compressor and reaction furthine, freid of	
4	application of axial now compressors.	14 11
4	Unit-vii Gas Turbines Classification and comparison of the Open and	14 Hrs
	Closed cycles; Classification on the basis of combustion (at constant	
	volume or constant pressure); Comparison of gas turbine with a steam	
	turbine and IC engine; Fields of application of gas turbines; Position of gas	
	turbine in power industry; Thermodynamics of constant pressure gas	
	turbine cycle (Brayton cycle); Calculation of net output, work ratio and	
	thermal efficiency of ideal and actual cycles; Cycle air rate, temperature	
	ratio; Effect of changes in specific heat and that of mass of fuel on power	
	and efficiency; Operating variables and their effects on thermal efficiency	
	and work ratio; Thermal refinements like regeneration, inter-cooling and	
	re-heating and their different combinations in the gas turbine cycle and	
	their effects on gas turbine cycle i.e. gas turbine cycle. Multistage	
	compression and expansion. Requirements of a gas turbine combustion	
	chamber: Blade materials and selection criteria for these materials and	
	requirements of blade materials. Gas turbine fuels	
	Init VIII Let Dropulsion Dripping of ist grouplaine Description of	
	Unit-viti jet Propulsion Principle of jet propulsion; Description of	

different types of jet propulsion systems like rockets and thermal jet engines, like (i) Athodyds (ramjet and pulsejet), (ii) Turbojet engine, and (iii) Turboprop engine. Thermodynamics of turbojet engine components; Development of thrust and methods for its boosting/augmentation; Thrust work and thrust power; Propulsion energy, Propulsion and thermal (internal) efficiencies; Overall thermal efficiency; Specific fuel c consumption; Rocket propulsion, its thrust and thrust power; Propulsion and overall thermal efficiency; **Unit IX: Elements of Power Plants:** Types of power plants, Selection of site for steam power plants. Base load and peak load of power plants. Variable load, Heat balance, Economics of power generation. Elements of nuclear power production

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2404.1	For providing comprehensive understanding and thermodynamic analysis		
		of positive displacement air compressors and thermal turbo machines used		
		in power generation, aircraft, spacecraft and rocket propulsion.		
CO2	BMEC-2404.2	Able to understand the thermodynamic working as well as performance of		
		thermal turbo power machinery		
CO3	BMEC-2404.3	Analyze and understand the various types of compressor along with their		
		practical applications		
CO4	BMEC-2404.4	Discuss about the working of different types of turbines along their jet		
		propulsion		

Text Books:

1. R. Yadav, Sanjay and Rajay, Applied Thermodynamics, Central Publishing House. 1998 2. J.S. Rajadurai, Thermodynamics and Thermal Engineering New Age International (P) Ltd. Publishers.

3. D.S. Kumar and V.P. Vasandani, Heat Engineering, Metropolitan Book Co. Pvt. Ltd. 2002 4. Lüdtke, K. H. (2004). Process centrifugal compressors: basics, function, operation, design, application. Springer Science & Business Media.

Reference Books:

1. K. Soman, Thermal Engineering, PHI Learning Pvt. Ltd. 2004

- 2. G. Rogers and Y. Mayhew, Engineering Thermodynamics, Pearson. 2010
- 3. D.G. Shephered, Principles of Turbo machinery Macmillan. 2012
- 4. H. Cohen, G.F.C. Rogers and M. Sarvan, Gas Turbine Theory, Longmans.2008

- 1. Applied Thermal Engineering (https://www.sciencedirect.com/journal/applied-thermal-engineering)
- 2. International Journal of Hydrogen Energy (https://www.sciencedirect.com/journal/international-journal-of-hydrogen-energy)

SUBJECT TITLE: MANUFACTURING PROCESSES-II SUBJECT CODE: BMEC-2405 SEMESTER: 4 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s and Outcome/s: This course is designed to make students learn principles, operations and capabilities of various metal machining and metal forming processes. They will understand the importance of process variables controlling these processes. They will also recognize the inter-relationships between material properties and manufacturing processes. Upon completion of the course, the students should have the ability to select different types of the metal machining and forming processes needed for the manufacturing of various geometrical shapes of products.

S.No.	Contents	Contact
		Hours
1	Unit–I Metal Forming: Introduction and classification. Rolling process: introduction, classification, rolling mills, products of rolling, rolling defects and remedies. Forging: open and closed die forging, forging operations, hammer forging, press forging and drop forging, forging defects, their causes and remedies. Extrusion: classification, equipment, defects and remedies. Drawing: drawing of rods, wires and tubes, draw benches, drawing defects and remedies. Sheet metal forming operations: piercing, blanking, embossing, squeezing, coining, bending, drawing and deep drawing, and spinning. Punch and die set up. Press working: press types, operations, press tools, progressive and combination dies. Process variables and numerical problems related to load calculation in Rolling, Forging, Extrusion, Drawing and Sheet metal forming. Load estimation for bulk (forging, rolling, extrusion and drawing), Sheet shearing. Powder Metallurgy: Introduction, advantages, limitations, and applications methods of producing metal powders, briquetting and sintering.	15 Hrs
2	Unit–II Metal Cutting: Introduction to machining processes, classification, Mechanics of chip formation process, concept of shear angle, chip contraction and cutting forces in metal cutting, Merchant theory, tool wear, tool life, machinability. Numerical problems based on above mentioned topics, Fundamentals of measurement of cutting forces and chip tool interface temperature. Cutting tools: types, geometry of single point cutting tool, twist drill and milling cutter, tool signature. Cutting tool materials: high carbon steels, alloy carbon steels, high speed steel, cast alloys, cemented carbides, ceramics and lubricants: classification, purpose, function and properties.	15 Hrs

	Economics of machining, principle of work holding, Fundamentals of jig and fixture design: definition, classification, cost calculations, locating element, clamping elements, procedure in designing Jigs and fixtures, Fits and tolerances analysis	
3	Unit III Machine Tools Lathe: classification, description and operations, kinematic scheme of lathe, and lathe attachments. Shaping and planing machine: classification, description and operations, drive mechanisms. Milling machine: classification, description and operations, indexing devices, up milling and down milling. Drilling machine: classification, description and operations. Boring machine: classification, description and operations, wheel selection, grinding wheel composition and nomenclature of grinding wheels, dressing and truing of grinding wheels. Broaching machine: classification, description and operations of all the above machines.	15 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-2405.1	Students will be able to Explain machining processes and cutting action involved
CO2	BMEC-2405.2	Calculate / estimate machining parameters
CO3	BMEC-2405.3	Differentiate among various machining processes
CO4	BMEC-2405.4	Select appropriate machining operation for particular application

Text Books:

1. B. L. Juneja and G. S. Sekhon, Fundamentals of Metal Cutting & Machine Tools, New Age International (P) Ltd. 2008

2. Coromant, S. (2010). Metal cutting technology-Technical guide.SandvikCoromant, Sweden.

3. H.S. Shan, Manufacturing Processes, Vol.I&II, Pearson Publishers. 2002

Reference Books:

1. PC Sharma, A Text Book of Production Technology, S. Chand & Company Ltd. 1998

- 2. M. P. Groover, Fundamentals of Modern manufacturing, Wiley 2010
- 3. Stephenson, D. A., & Agapiou, J. S. (2018). Metal cutting theory and practice.CRC press.

4. SeropeKalpakjian and Steven R. Schmid, Manufacturing Engineering and Technology, Pearson Publishers. 2014

- 1. The International Journal of Advanced Manufacturing Technology (https://www.springer.com/journal/170)
- 2. Journal of Materials Processing Technology (https://www.sciencedirect.com/journal/journalof-materials-processing-technology)

SUBJECT TITLE: THEORY OF MACHINES LAB SUBJECT CODE: BMEC-2471 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture (L) Tu 0

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50

External Assessment: 50

S.No.	Contents	Contact Hours
1	To draw displacement, velocity & acceleration diagram of slider - crank and four bar mechanism.	2 Hrs
2	To study the various inversions of kinematic chains.	2 Hrs
3	Conduct experiments on various types of governors and draw graphs between height and equilibrium speed of a governor.	2 Hrs
4	Determination of gyroscopic couple (graphical method).	2 Hrs
5	Balancing of rotating masses (graphical method).	2 Hrs
6	Cam profile analysis (graphical method) 2 Hrs	
7	Determination of gear- train value of compound gear trains and epicyclic gear trains.	2 Hrs
8	To draw circumferential and axial pressure profile in a full journal bearing.	2 Hrs
9	To determine coefficient of friction for a belt-pulley material combination.	2 Hrs
10	Determination of moment of inertia of flywheel.	2 Hrs

CO1	BMEC-2471.1	Analyze and draw the velocity, displacement and acceleration diagrams of various inversions of machines
CO2	BMEC-2471.2	To discuss about the working of different types of governors along with their graphical representation
CO3	BMEC-2471.3	Graphically represent the working profile of gyroscope, rotating masses and cam profile
CO4	BMEC-2471.4	Analyze the gear ratio of compound and epicyclic gear trains

SUBJECT TITLE: FLUID MECHANICS LAB SUBJECT CODE: BMTE-2472 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture (L) 0

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50

External Assessment: 50

S.No.	Contents	Contact
		Hours
1	To determine the metacentric height of a floating vessel under loaded and	2 Hrs
	unloaded conditions.	
2	To study the flow through a variable area duct and verify Bernoulli's	2 Hrs
	energy equation.	
3	To determine the coefficient of discharge for an obstruction flow meter	2 Hrs
	(venture meter/ orifice meter)	
4	To determine the discharge coefficient for a V- notch or rectangular	2 Hrs
	notch.	
5	To study the transition from laminar to turbulent flow and to ascertain the	2 Hrs
	lower critical Reynolds number.	
6	To determine the hydraulic coefficients for flow through an orifice.	2 Hrs
7	To determine the friction coefficients for pipes of different diameters.	2 Hrs
8	To determine the head loss in a pipe line due to sudden expansion/	2 Hrs
	sudden contraction/ bend.	
9	To determine the velocity distribution for pipeline flow with a pitot static	2 Hrs
	probe.	

CO1	BMEC-2472.1	To determine the fluid flow and metacentric heights of fluid flow through
		the vessel
CO2	BMEC-2472.2	To evaluate the co-efficient of discharge for the fluid flows through notch
CO3	BMEC-2472.3	To evaluate the hydraulic co-efficient and friction co-efficien5t flowing through the orifice
CO4	BMEC-2472.4	To discuss the velocity distribution of fluid flow pipe lines

SUBJECT TITLE: MANUFACTURING PROCESSES LABSUBJECT CODE: BMTE-2473SEMESTER: 4thCONTACT HOURS/WEEK:Lecture (L)00

Lecture (L) Tutorial (T)		Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50

External Assessment: 50

S.No.	Contents	Contact Hours
1	Welding: To make lap joint, butt joint and T- joints with oxy- acetylene gas	2 Hrs
	welding and manual arc welding processes	
2	Welding:	2 Hrs
	To study MIG, TIG and Spot welding equipment and make weld joints by these processes	
3	Machining and Forming: To study constructional features of following machines through drawings/ sketches:	4 Hrs
	a. Grinding machines (Surface, Cylindrical)	
	b. Hydraulic Press	
	c. Draw Bench	
	d. Drawing and Extrusion Dies	
	e. Rolling Mills	
4	Machining and Forming: To grind single point and multipoint cutting	2 Hrs
	tools	
5	Machining and Forming: To prepare job on Lathe involving specified	2 Hrs
	tolerances; cutting of V- threads and square threads.	
6	Machining and Forming: To prepare job on shaper involving plane	2 Hrs
	surface,	
7	Machining and Forming: Use of milling machines for generation of	2 Hrs
	plane surfaces, spur gears and helical gears; use of end mill cutters.	
8	Machining and Forming: To determine cutting forces with dynamometer for turning, drilling and milling operations	2 Hrs

CO1	BMEC-2473.1	Discuss the basic of welding processes along with their practical applications
CO2	BMEC-2473.2	Analyze the working principles of machining and forming operations
CO3	BMEC-2473.3	Prepare a job in lathe machine and milling machine
CO4	BMEC-2473.4	Evaluate the cutting forces with the help of dynamometer for different machining operations

SYLLABUS

SEMESTER-V

SUBJECT TITLE: MATHEMATICS-III SUBJECT CODE: BMEC-3501 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives and Expected Outcomes: This course is designed for providing comprehensive understanding of Fourier series, Laplace Transforms and various Mathematical Functions in Engineering analysis. The students will be able to understand the applications as well as performance of these techniques in various Engineering fields. They will also be able to select various Engineering Models for optimization and implementation with aforesaid applications.

S.No.	Contents	
		Hours
1	 UNIT-1: Fourier Series Periodic functions, Euler's formula. Even and odd functions, Change of Interval, half range expansions, Fourier series of different wave forms. UNIT-2: Laplace Transforms: Definition, Laplace transforms of various standard functions, properties of Laplace transforms, inverse Laplace transforms, transform of derivatives and integrals, Transform of multiplication and division by t, convolution theorem, Laplace transform of unit step function. Applications to solution of ordinary linear differential equations with constant coefficients. 	15 Hrs
2	UNIT-3: Special Functions: Frobenius method for power series solution of differential equations, Bessel's equation, Bessel functions of the first and second kind, Legendre's equation, Legendre polynomial.	10 Hrs
3	UNIT-4: Partial Differential Equations: Formation of partial differential equations, Equations solvable by direct integration, Linear partial differential equations, homogeneous partial differential equations with constant coefficients. Solution by method of separation of variables, Applications: Wave equation and Heat conduction equation in one dimension. Solution of two dimensional Laplace equation (Cartesian coordinates).	10 Hrs
4	UNIT-5: Functions of Complex Variable: definition of Limit, continuity, derivative of complex functions, and analytic function. Necessary and sufficient conditions for analytic function (without proof), Cauchy-Riemann equation (Cartesian and polar co-ordinates), harmonic functions, orthogonal system, determination of conjugate functions. Miller's Thosmson method, Applications to fluid flow problems. Brief introduction to basic transformations, Bilinear transformations, complex integration: Line integrals in the complex plane, Cauchy's integral theorem, Cauchy's and	10 Hrs

Laurent's expansions, singular points, poles, residue, Cauchy's Residue theorem, evaluation of real integrals by contour integration (F(*cosx, sinx*)

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3501.1	Students will be able to comprehensive understanding of Fourier series, Laplace transforms and various mathematical functions in engineering analysis
CO2	BMEC-3501.2	To make students able to select various Engineering models for optimization and implementation with aforesaid applications
CO3	BMEC-3501.3	To implement the various Mathematic equation for evaluating the results
CO4	BMEC-3501.4	To understand the function of Partial differential equation and complex variables

Text Books:

1. Kreyszing Erwin, Advanced Engineering Mathematics, Wiley Eastern, 2014

2. B.S Grewal, Higher Engineering Mathematics, Khanna Publishers, 2002

Reference Books:

- 1. N.K Jain, Numerical Solutions of Differential Equations, Prentice Hall, 2006
- 2. Sharma and Gupta, Differential Equations, Krishna Prakashan Media, 2008
- 3. N.P Bali, Text book of Eng Mathematics, Laxmi Publishers, 2000

- 1. Encyclopedia of Mathematics Education (Link: https://link.springer.com/referencework/10.1007/978-3-030-15789-0)
- 2. Educational Studies in Mathematics (Link: https://www.springer.com/journal/10649)

SUBJECT TITLE: DESIGN OF MACHINE ELEMENTS-I SUBJECT CODE: BMEC-3502 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts of machine design and inertia forces applied and concept of concurrent engineering. Students should be able to understand various types of design processes for static and dynamic application. They will also gain knowledge of kinematic synthesis and different applications in Mechanical engineering.

S.No.	Contents	Contact
		Hours
1	Meaning of design with special reference to machine design, definition	12 Hrs
	and understanding of various types of design, design process, design	
	and creativity, general design considerations, concept of tearing,	
	bearing, shearing, crushing, bending and fracture.	
	Designation of materials according to Indian standards code, basic	
2	criteria of selection of material, mechanical properties of materials	10 11
2	Concept of concurrent engineering in design, introduction to Design	10 Hrs
	for A manufacturing considerations in machine design, suess	
	design for static loading design for variable loading for both limited	
	and unlimited life concept of fatigue and endurance strength	
	Design of fasteners:	
	Design of rivers for boiler joints, lozenge joints, eccentrically loaded	
	joints. Design of spigot and socket cotter joint, gib and cotter joint and	
	knuckle joint.	
	Design of welded joints for various loading conditions in torsion, shear	
	or direct loads, eccentrically loaded joints	
	S-N diagrams for steel and aluminum	
3	Design of shaft and axles:	14 Hrs
	Design of solid and hollow shafts for transmission of torque, bending	
	moments and axial forces, Design of shaft for rigidity, Design of axle.	
	Design of keys and couplings:	
	Design of keys, design of splines, design of sleeve and solid muff	
	coupling, clamp or compression coupling, rigid and flexible flange	
	coupling, design of universal joint.	
4	Design of levers and links:	14 Hrs
	Design of levers(foot lever, hand lever, cranked lever, bell crank lever,	
	safety valve lever and shoe brake lever), design of link	
	Design of pipe joints:	

Stresses in pipe joints, design of pipe joints with oval flange, square flange, design of seals and gaskets.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3502.1	To design the required size of shaft, key and coupling for the given application
CO2	BMEC-3502.2	To identify various failures and calculate resisting areas of machine elements
CO3	BMEC-3502.3	To design machine element subjected to direct, bending, twisting and combined stress
CO4	BMEC-3502.4	To implement the Mathematics formulas and thereafter design the various Mechanical elements

Text Books:

1. Joseph E. Shigley, Charles Russell Mischke, Richard Gordon Budynas, Mechanical Engineering Design, McGraw-Hill, 2006

2. Robert C. Juvinall Fundamentals of machine component design, Wiley 2008

3. V.K Jadon, Analysis and design of machine elements, I.K. International, 2010

Reference Books:

1. V.B Bhandari, Design of Machine elements, Tata Mc. Hill, 2006

2. S.S Jolly, Design of machine elements-I, DhanpatRai and Co., 2012

- 1. International Journal of Mechanical Engineering Education (https://journals.sagepub.com/doi/abs/10.7227/IJMEE.33.1.1)
- 2. Research in Engineering Design (https://www.springer.com/journal/163)

SUBJECT TITLE: COMPUTER AIDED DESIGN AND MANUFACTURING SUBJECT CODE: BMEC-3503 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the concept of Graphic systems and standards and its interfacing for various geometric transformations in design engineering. Students should be able to understand various types of design processes for its transformation into wireframe models. They will also gain knowledge of Parametric Modeling Techniques and different applications in Mechanical engineering.

S.No.	Contents	Contact
		Hours
1	Fundamentals of CAD:	15 Hrs
	Design process with and without computer; CAD/CAM system and its evaluation criteria, brief treatment of input and output devices, Display devices; Functions of a graphics package and Graphics standard CKS_ICES and STEP: Modeling and viewing: Application	
	areas of CAD.	
	Geometric Transformations:	
	Mathematics preliminaries, matrix representation of 2 and 3 dimensional Concatenation of transformation matrices. Application of geometric transformations.	
	Geometric Modeling:	
	Wireframe model: solid modeling: Boundary Representation (B-rep),	
	Technique ; Mass , volumetric properties calculations; surface	
	modeling, concepts of hidden-line removal and shading: Mechanical	
	Assembly Kinematics analysis and simulation.	
2	Representation of curves and surfaces: Non-parametric and	15 Hrs
	Hermite Cubic, Beizer and B-spline curves; Surface and its analysis.	
	Representation of Analytical and synthetic surfaces.	
	Overview of FEM, Advantages and applications, recent advance in	
	FEM, FEA software Basic principles and general procedure of FEM.	
3	NC/CNC Machine Tools:	15 Hrs
	NC machine tools- basic components, coordinate systems; features	
	of NC machine tools. Computerized Numerical Control (CNC):	
	Tooling for NC machines - tool presetting equipment, flexible	
	tooling, tool length compensation, tool path graphics; NC motion	
	control system; Manual part programming, fixed/floating zero. Block	
	format and codes: Computer assisted part programming. DNC and	

	Adaptive Control: Direct numerical control: Adaptive control in machining system: Combined DNC/CNC system	
	machining system, comonica Diverce system.	
4	Group Technology (GT): Part families; part classification and	15 Hrs
	coding system, Group technology, machine cells, Advantages of GT.	
	Computer Aided Process Planning: Introduction and benefits of	
	CAPP. Types of CAPP systems, machinability, data selection	
	systems in CAPP.	
	Computer Integrated Manufacturing Systems: Basic Concepts of	
	CIM: CIM Definition, The meaning of Manufacturing, Types of	
	Manufacturing systems; Need, Elements, Evolution of CIM; Benefits	
	of CIM; Flexible Manufacturing Systems: Physical Components of	
	an FMS. Types of Flexibility, Layout Considerations; FMS benefits.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3503.1	To understand the concept of Graphic systems and standards and its interfacing for various geometric transformations in design engineering
CO2	BMEC-3503.2	To understand various types of design processes for its transformation into wireframe models
CO3	BMEC-3503.3	To gain knowledge of Parametric Modeling Techniques and different applications in Mechanical engineering
CO4	BMEC-3503.4	To understand and analyze the various processes such as group technology, computer aided process planning and computer integrated manufacturing systems

Text Books:

1. Mikell P. Groover, Emory W. Zimmers, CAD/CAM, PHI, 2002

2. D.D. Bedworth, M.R Henderson & P.M. Wolfe, Computer Integrated Design and

Manufacturing, Tata McGraw Hill,2008

3. ZeidIbraham, CAD/CAM - theory and Practice, Tata McGraw Hill,1998

Reference Books:

1. P. N Rao, CAD/CAM, Tata McGraw Hill,2004

2. C. Elanchezhian, G. ShanmugaSundar, Computer aided manufacturing (CAM), Firewall Media, 2010

Journals:

1. Journal of Intelligent Manufacturing (https://www.springer.com/journal/10845)

2. Archives of Computational Methods in Engineering (https://www.springer.com/journal/11831)

OPEN ELECTIVE (5TH SEM)

SUBJECT TITLE: HUMAN RESOURCE MANAGEMENT SUBJECT CODE: BMEC-3504 SEMESTER: 5th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact Hrs
1	 Introduction: Introduction to Human Resource Management and its definition, functions of Human Resource Management & its relation to other managerial functions. Nature, Scope and Importance of Human Resource Management in Industry, Role & position of Personnel function in the organization. Procurement and Placement: Need for Human Resource Planning; Process of Human Resource Planning; Methods of Recruitment; Psychological tests and interviewing; Meaning and Importance of Placement and Induction, Employment Fachage (General Action 1950). 	Hrs 12 Hrs
	Exchanges (Compulsory Notification of vacancies) Act 1959, The Contract Labour (Regulation & Abolition) Act 1970.	
2	Training & Development: Difference between training and Development; Principles of Training; Employee Development; Promotion-Merit v/s seniority Performance Appraisal, Career Development & Planning. Job analysis & Design:	12 Hrs
	Job Analysis: Job Description & Job Description, Job Specification.	
3	 Job Satisfaction: Job satisfaction and its importance; Motivation, Factors affecting motivation, introduction to Motivation Theory; Workers ' Participation, Quality of work life. The Compensation Function: Basic concepts in wage administration, company's wage policy, Job Evaluation, Issues in wage administration, Bonus & Incentives, Payment of Wages Act-1936, Minimum Wages Act-1961 	10 Hrs
4	Integration: Human Relations and Industrial Relations; Difference between Human Relations and Industrial Relations, Factors required for good Human Relation Policy in Industry; Employee Employer relationship Causes and Effects of Industrial disputes; Employees Grievances & their Redressal, Administration of Discipline, Communication in organization, Absenteeism, Labour Turnover, Changing face of the Indian work force	11 Hrs

and their environment, Importance of collective Bargaining; Role of trade unions in maintaining cordial Industrial Relations. Maintenance:	
Fringe & retirement terminal benefits, administration of welfare amenities, Meaning and Importance of Employee Safety, Accidents-Causes & their Prevention, Safety Previsions under the Factories Act 1948; Welfare of Employees and its Importance, Social security, Family Pension Scheme, ESI act 1948, Workmen's Gratuity Act 1972, Future challenges for Human Resource Management.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3504.1	Integrated perspective on role of HRM in modern business. Ability to plan human resources and implement techniques of job design
CO2	BMEC-3504.2	Competency to recruit, train, and appraise the performance of employees
CO3	BMEC-3504.3	Rational design of compensation and salary administration
CO4	BMEC-3504.4	Ability to handle employee issues and evaluate the new trends in HRM

Text Book:

1. T.N. Chhabra- Human Resource Management (DhanpatRai& Co.) 2010

Reference Book:

1. A.P Verma- Human Resource Management (S.K Kataria & Sons) 2008

Journal:

1. International Journal of Management Reviews (Link: https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-2370.00020)

OPEN ELECTIVE (5thSEM)

SUBJECT TITLE: MATERIAL MANAGEMENT SUBJECT CODE: BMEC-3504 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)	
3	0	0	3	

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction:	10 Hrs
	Meaning, definition, functions of materials management, Concept of	
	integrated material management, Relationship of material management	
	with other Organizational functions.	
2	Material Planning & Budgeting:	7 Hrs
	Need for material planning, Factors affecting material planning,	
	Techniques of material planning, Material classification, codification and	
	standardization, Material budgeting - meaning and need, techniques of	
	material budgeting.	
3	Inventory Control:	20 Hrs
	Need and meaning of inventory, types of inventory, functions of	
	inventory control, Inventory costs, Inventory control tool - ABC, VED,	
	XYZ and FSN: Economic order Quantity and replenishment of stocks.	
	Physical control of inventory: Fixed order, Two bin and Kardex systems	
	Material requirement planning (MRP-I) Spare parts control for	
	maintenance purposes. Evaluation of inventory control performance.	
	Concept of Just-in-Time(JIT). Use of computers for inventory control	
	Purchasing:	
	Purchasing principles, procedures and systems, Functions of purchasing,	
	Make-or-buy decision, Vendor development and vendor rating. Factors	
	affecting purchase decisions, Legal aspects of purchasing,	
	Documentation and procedure for import.	0.11
4	Storage:	8 Hrs
	Functions and importance of store keeping, types of stores, store	
	accounting and store verification, Legal aspects of store keeping,	
	Management of surplus, scrap and obsolete items. Importance of material	
	handling in store keeping, handling equipment.	

CO1	BMEC-3504.1	Identifying the scope for integrating materials management function over
		the logistics and supply chain operations

CO	02	BMEC-3504.2	Identify, study, compare, and evaluate alternatives, select and relate with a
			good supplier
CO)3	BMEC-3504.3	Analyzing the materials in storage, handling, packaging, shipping
			distributing and standardizing.
CO	04	BMEC-3504.4	Integrate important materials functions to both products and services & use
			MRP,ERP,& PLM managing materials

Text Books:

1. H.A. Taha, 'Operations Research', Prentice Hall of India, New Delhi.

- 2. H.M. Wagner, 'Principles of Operations Research', Prentice Hall.
- 3. P.K. Gupta and D.S. Hira, 'Operations Research', S. Chand & Co.

Reference Books:

- 1. F.S. Hiller and G.I. Libermann, 'Introduction to Operation Research', Holden Ray.
- 2. Wiest& Levy, 'A Management Guide to PERT/CPM', Prentice Hall.

Journal:

1. Journal of Manufacturing Technology Management (https://www.emeraldgrouppublishing.com/journal/jmtm)

OPEN ELECTIVE (5thSEM)

SUBJECT TITLE: SOLAR ENERGY SUBJECT CODE: BMEC-3504 SEMESTER: 5th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction: Renewable and non-renewable energy sources, their	10 Hrs
	availability and growth in India; energy consumption as a measure of	
	Nation's development; strategy for meeting the future energy	
	requirements	
2	Solar Energy:	7 Hrs
	Solar radiation - beam and diffuse radiation; earth sun angles, attenuation	
	and measurement of solar radiation; Optical properties of materials and	
	selective surfaces; Principles, general description and design procedures	
	of flat Platte and concentrating collectors; Performance analysis of	
	cylindrical and parabolic collectors; Solar energy storage systems - their	
	types, characteristics and capacity; solar ponds. Applications of solar	
	energy in water, space and process heating, solar refrigeration and air	
	conditioning; water desalination and water pumping; solar thermal power	
	generation; solar cells and batteries; economic analysis of solar systems.	
3	Wind Energy:	10 Hrs
	Principle of wind energy conversion; Basic components of wind energy	
	conversion systems; wind mill components, various types and their	
	constructional features; design considerations of horizontal and vertical	
	axis wind machines: analysis of accodynamic forces acting on wind mill	
	blades and estimation of power output; wind data and site selection	
	considerations.	
4	Direct energy conversion systems:	8 Hrs
	1) Magnetic Hydrodynamic (MHD) Generator: gas conductivity and	
	MHD equations; operating principle, types and working of different	
	MHD systems – their relative merits; MHD materials and production	
	of magnetic fields.	
	11) I nermo-electric generators: I hermo-electric effects and materials;	
	thermo-electric devices and types of thermo-electric generators;	
	inermo-electric refrigeration.	
	working principle of thermionic Eyel Calls, thermodynamic survey	
	working principle of mermonic rule Cens: mermodynamic aspects;	

	v) Performance, applications and economic aspects of above mentioned	
	direct energy conversions systems.	
5	Miscellaneous Non-Conventional energy Systems:	10 Hrs
	i) Bio-mass: Concept of bio-mass conversion, photo-synthesis and bio-	
	gasification; Bio gas generators and plants - their types constructional	
	features and functioning; digesters and their design; Fuel properties of	
	bio gas and community bio gas plants	
	ii) Geothermal: Sources of geothermal energy - types, constructional	
	features and associated prime movers.	
	iii) Tidal and wave energy: Basic principles and components of tidal and	
	wave energy plants; single basin and double basin tidal power plants;	
	conversion devices Advantages/disadvantages and applications of	
	above mentioned energy systems.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3504.1	Conceptual knowledge of the technology, economics and regulation related issues associated with solar power development and management
CO2	BMEC-3504.2	Ability to analyse the viability of solar power projects
CO3	BMEC-3504.3	Capability to integrate various options and assess the business and policy
CO4	BMEC-3504.4	Advocacy of strategic and policy recommendations on usage of solar
		power

Text Books:

- 1. H.P. Garg and Jai Prakash, Solar Energy : Fundamentals and Applications, Tata McGraw Hill.
- 2. S.P. Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill.
- 3. John A. Duffic and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley.

Reference Books:

- 1. S. L. Sheldon, Chang, Energy Conversion, Prentice Hall.
- 2. O. M. Bockris and S. Srinivasan, Fuel Cells, McGraw Hill.

- 1. <u>Renewable and Sustainable Energy Reviews</u> (Link:<u>https://www.sciencedirect.com/journal/renewable-and-sustainable-energy-reviews</u>)
- 2. MRS Bulletin (Link: https://www.cambridge.org/core/journals/mrs-bulletin)

OPEN ELECTIVE (5thSEM)

SUBJECT TITLE: OPTIMIZATION TECHNIQUES SUBJECT CODE: BMEC-3504 SEMESTER: 5th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact Hrs
1	Introduction : Historical Development; Engineering applications of Optimization; Optimization techniques – classical and advanced techniques. Art of Modeling Origin of OR and its role in solving industrial problems: General approach for solving OR problems. Classification of mathematical models: various decision making environments.	10 Hrs
	Linear Programming : Formulation of linear mathematical models: Graphical and simplex techniques for solution of linear programming problems, Motivation of simplex method, Simplex algorithm and construction of simplex tableau; Simplex criterion; Minimization versus maximization problems, Big-M method and two phase method, Introduction to duality theory and sensitivity analysis.	7 Hrs
	 Transportation and Assignment Models: Various initial basic feasible solutions methods, Optimization of transportation and assignment using different methods considering the concept of time and cost function. Dynamic Programming: Characteristics of dynamic programming problems, deterministic dynamic programming, and probabilistic dynamic programming. Queuing Theory: Basic structure of queuing model, Types of queuing situation: Queuing models with Poisson's input and exponential service, their application to simple situations. 	20 Hrs
	Network Models : Shortest route and traveling sales man problems, PERT & CPM, analysis of time bound project situations, construction of networks, identification of critical path, slack and float, crashing of network for cost reduction. Non-linear Programming Models : Graphical illustration to non-linear programming problems, introduction to different types of non-linear programming problems. Problems related to the topic.	8 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3504.1	Recall the theoretical foundations of various issues related to linear programming modeling to formulate real-world problems as a L P model		
CO2	BMEC-3504.2	Demonstrate the optimized material distribution schedule using		
		minimize total distribution cost.		
CO3	BMEC-3504.3	Identify appropriate equipment replacement technique to be adopted to		
		minimize maintenance cost by eliminating equipment break-down		
CO4	BMEC-3504.4	Demonstrate the various selective inventory control models to analyse and		
		optimize inventory systems.		

Text Books:

1. H.A. Taha, 'Operations Research', Prentice Hall of India, New Delhi.

- 2. H.M. Wagner, 'Principles of Operations Research', Prentice Hall.
- 3. P.K. Gupta and D.S. Hira, 'Operations Research', S. Chand & Co.

Reference Books:

1. F.S. Hiller and G.I. Libermann, 'Introduction to Operation Research', Holden Ray.

2. Wiest& Levy, 'A Management Guide to PERT/CPM', Prentice Hall.

Journal:

1. Computers & Industrial Engineering (Link: https://www.sciencedirect.com/journal/computers-and-industrial-engineering)

SUBJECT TITLE: AUTOMOBILE ENGINEERING SUBJECT CODE: BMEC-3505 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the concept of Power requirements, Fuel Supply System, various types of Chassis and Suspension system and working of various components in Automobile system. Students should be able to understand various types of Transmission systems. They will also gain knowledge of Lubrication and cooling system in Automobile engineering.

S.No.	Contents	Contact Hrs
1	Introduction	10 Hrs
	Basic structure, general layout and type of automotive vehicles,	
	Frameless and unitary construction; position of power unit	
	Power Unit	
	Power requirements - motion resistance and power loss, tractive effort	
	and vehicle performance curves; selection of power unit and engine	
	performance characteristics; pollution due to vehicle emission and	
	exhaust emission control system, silencers, types of pistons and rings	
	Fuel Supply System	
	Air cleaner and fuel pumps; Air fuel requirements and carburation;	
	MDE: (Detrol) Dissel fuel system - cleaning injection systems;	
	MPPT (Petrol), Diesel luel system - cleaning, injection pump, injector	
2	and hozzles, Common Kan fuel supply system	7 11
	Lubrication and Cooling Systems	/ Hrs
	of lubricants and oil additives: different systems of lubrication - oil	
	filters, oil pumps and oil pressure indicator: crank case ventilation and	
	dilution. Purpose of cooling, air and water cooling systems: radiator.	
	thermostat, pump and fan	
	Chassis and Suspension	
	Loads on the frame, considerations of strength and stiffness, engine	
	mounting, independent suspension systems (Mac Pherson, Trailing	
	Links, Wishbone), shock absorbers and stabilizers; wheels and tyres, tyre	
	wear types, constructional details of plies	
3	Transmission system	20 Hrs
	Basic requirements and standard transmission systems; constructional	
	features of automobile clutch, gear box, differential, front and rear axles;	
	overdrives, propeller shaft, universal joint and torque tube drive; Rear	
	wheel vs front wheel drive, principle of automatic transmission	
	Steering System	

	Requirement and steering geometry; castor action, camber and king pin angle, toe-in of front wheels, steering linkages and steering gears; wheel	
	alignment; power steering, Ball re-circulating mechanism	
	Braking System	
	General braking requirements; Mechanical, hydraulic, vacuum power	
	and servo brakes; Weight transfer during braking and stopping distances	
4	Electric System	8 Hrs
	Classification, Introduction to Conventional and transistorized ignition	
	systems; Charging, capacity ratings and battery testing; starter motor and	
	drive arrangements: voltage and current regulation	
	Maintenance	
	Preventive maintenance, trouble shooting and rectification in different	
	systems; engine tuning and servicing, major tools used for maintenance	
	of automobiles	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3505.1	To understand the basic layout of an automobile
CO2	BMEC-3505.2	Understand the operation of engine cooling, lubrication, ignition, electrical and air conditioning systems
CO3	BMEC-3505.3	Analyze the vehicle transmission, suspension, steering and braking systems
CO4	BMEC-3505.4	Understand automotive electronics and explore latest developments in automobiles

Text Books:

1. W.H Crouse, Automotive mechanics, McGraw Hill,2008

2. J. Heitner, Automotive Mechanics, East West Press, 2010

3. Kirpal Singh, Automobile Engineering Vol. I and II, Standard Publishers, 2001

Reference Books:

- 1. J. Webster, Auto Mechanics, Glencoe Publishing Co., 2004
- 2. P.S Gill, Automobile Engineering, S.K Kataria, 2004

- 1. Engineering Studies (https://www.tandfonline.com/journals/test20)
- 2. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering (https://journals.sagepub.com/home/PID)

SUBJECT TITLE: INDUSTRIAL AUTOMATION AND ROBOTICS SUBJECT CODE: BMEC-3506 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the need and concept of Automation in Conventional Mechanical System. Students should be able to understand various types of Basic hydraulic and pneumatic circuits systems. They will also gain knowledge of Electrical and Electronic Controls and Industrial Applications of Robots

S.No.	Contents	Contact
		Hrs
1	Introduction: Concept and scope of automation, Socio economic impacts of automation, Types of Automation, Low Cost Automation Fluid Power: Fluid power control elements, Standard graphical symbols, Fluid power generators, Hydraulic and pneumatic Cylinders - construction, design and mounting; Hydraulic and pneumatic Valves for pressure, flow and direction control	10 Hrs
2	Basic hydraulic and pneumatic circuits: Direct and Indirect Control of Single/Double Acting Cylinders, Designing of logic circuits for a given time displacement diagram & sequence of operations, Hydraulic & Pneumatic Circuits using Time Delay Valve & Quick Exhaust Valve Memory Circuit & Speed Control of a Cylinder. Troubleshooting and "Causes & Effects of Malfunctions". Basics of Control Chain Circuit Layouts. Designation of specific Elements in a Circuit	14 Hrs
3	Fluidics: Boolean algebra, Truth Tables, Logic Gates, Coanda effect Electrical and Electronic Controls Basics of Programmable logic controllers (PLC), Architecture & Components of PLC, Ladder Logic Diagrams	13 Hrs
4	Transfer Devices and feeders: Classification, Constructional details and Applications of Transfer devices, Vibratory bowl feeders, Reciprocating tube, Centrifugal hopper feeders Robotics Introduction: Classification based on geometry, control and path movement, Robot Specifications, Robot Performance Parameters Robot Programming, Machine Vision, Teach pendants, Industrial Applications of Robots	8 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3506.1	To understand the need and concept of Automation in Conventional Mechanical System
CO2	BMEC-3506.2	To understand various types of Basic hydraulic and pneumatic circuits systems
CO3	BMEC-3506.3	To gain knowledge of Electrical and Electronic Controls and Industrial Applications of Robots
CO4	BMEC-3506.4	Analyze and understand the various transfer devices and feeders

Text Books:

1. Anthony Esposito, Fluid Power with applications, Pearson, 2008

- 2. S. R Majumdar, Pneumatic Control, McGraw Hill, 2006
- 3. S. R Deb, Robotic Technology and Flexible Automation, Tata Mc Hill,2012

Reference Books:

- 1. Saeed B. Niku Introduction to Robotics, Wiley India, 2014
- 2. AshitavaGhosal, Robotics, Oxford, 2006

Journals:

1. Journal of Engineering, Design and Technology

(https://www.emerald.com/insight/publication/issn/1726-0531)

2. Journal of Emerging Technologies in Accounting (https://publications.aaahq.org/jeta)

SUBJECT TITLE: COMPUTER AIDED DESIGN AND MANUFACTURING LABSUBJECT CODE: BMEC-3571SEMESTER: 5CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practical (P)Credit

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact
1	Introduction to modeling (main a one CAD softmens).	Hrs
1	 2D drawing using sketcher – 2 Drawings 	
	2. 3D modeling using 3D features (Modeling of Crane Hook, Bench Vice, Screw Jack components)	
	3. Assembling and drafting (any 2 above mentioned assemblies) with proper mating conditions and interference checking.	8 Hrs
	4. Surface modeling – (Computer mouse, Plastic bottles with spraying Nozzle)	
2	Computer Aided Manufacturing:	
	1. Manual part programming on CNC Lathe and CNC Milling – (4 programs, 2 for each)	8 Hrs
	2. Computer Aided Part programming for CNC Lathe and CNC Milling to generate tool path, NC code, and Optimization of tool path (to reduce machining time) using any CAM software.	

CO1	BMEC-3571.1	To understand the basics of working with Auto CAD, also to be familiar with various 2D commands
CO2	BMEC-3571.2	Analyze and draw a 2D and 3D models of various Mechanical Components
CO3	BMEC-3571.3	To understand the basics of part programming and CNC lathe and CNC milling machine
CO4	BMEC-3571.4	Analyze and draw a 2D and 3D models of various Mechanical Components

SUBJECT TITLE: AUTOMOBILE ENGINEERING LAB SUBJECT CODE: BMEC-3572 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact
		Hrs
1	Valve refacing and valve seat grinding and checking for leakage of valves	2 Hrs
2	Trouble shooting in cooling system of an automotive vehicle	2 Hrs
3	Trouble shooting in the ignition system, setting of contact breaker points	2 Hrs
4	Demonstration of steering system and measurement of steering geometry angles and their impact on vehicle performance.	2 Hrs
5	Demonstration of Various Transmission System of an automotive vehicle.	2 Hrs
6	Trouble shooting in braking system with specific reference to master cylinder, brake shoes, overhauling of system and the adjusting of the system and its testing.	2 Hrs
7	Fault diagnosis in transmission system including clutches, gear box assembly and differential.	2 Hrs
8	Replacing of ring and studying the method of replacing piston and piston rings	2 Hrs

CO1	BMEC-3572.1	To understand the basic layout of valve mechanism used in engine block assembly
CO2	BMEC-3572.2	To analyze the trouble shooting of ignition system and cooling system in automobile engine
CO3	BMEC-3572.3	To understand the various transmission systems of an automobile vehicle
CO4	BMEC-3572.4	To diagnose the faults in transmission system including clutches, gear box assembly, etc.

SUBJECT TITLE: INDUSTRIAL AUTOMATION AND ROBOTICS LAB SUBJECT CODE: BMEC-3573 SEMESTER: 5 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact
		Hrs
1	Design and assembly of hydraulic / pneumatic circuit.	2 Hrs
2	Demonstration and working of power steering mechanism	2 Hrs
3	Study of reciprocating movement of double acting cylinder using	2 Hrs
	pneumatic direction control valves	
4	Use of direction control valve and pressure control valves clamping	2 Hrs
	devices for jig and fixture	
5	Study of robotic arm and its configuration	2 Hrs
6	Study the robotic end effectors	2 Hrs
7	Study of different types of hydraulic and pneumatic valves	2 Hrs

CO1	BMEC-3573.1	Analyze and design of basic circuits used in automation industry
CO2	BMEC-3573.2	Demonstrate the working of power steering along with control valves
CO3	BMEC-3573.3	Use of control valves and clamping devices for jig and fixtures
CO4	BMEC-3573.4	Study and analyze the working of robotic arm and robot end effectors.

SUBJECT TITLE: PERSONALITY DEVELOPMENT-I SUBJECT CODE: BMEC-3574 SEMESTER: 5 CONTACT HOURS/WEEK: Lecture (L) Tutoria

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	2

Internal Assessment: 100

In this student has to attend the classes for improving their personality skills

CO1	BMEC-3574.1	Demonstrate soft skills required for business situations and understand the importance of soft skills as well as interpersonal skills
CO2	BMEC-3574.2	Develop various kind of soft and professional skills
CO3	BMEC-3574.3	Communicate fluently
C04	BMEC-3574.4	Understand the importance of team building and time management
C05	BMEC-3574.5	Learn active listening and responding skills
C06	BMEC-3574.6	Learn the accurate styles of digital communication

SUBJECT TITLE: INDUSTRIAL TRAINING SUBJECT CODE: BMEC-3575 SEMESTER: 5 CONTACT HOURS/WEEK: Lecture (L)

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	2

Internal Assessment: 50 End Term Exam: 50

In this student has to submit a file of what they have did in their Industrial training

CO1	BMEC-3575.1	To participate in ongoing projects of the industry
CO2	BMEC-3575.2	Determine the use of advanced machining tools and techniques
CO3	BMEC-3575.3	Interact with industry personnel and follow the Engineering practices
C04	BMEC-3575.4	Develop awareness about general workshop behavior and built a team skills

SYLLABUS

SEMESTER-VI

SUBJECT TITLE: MECHANCIAL MEASUREMENTS AND METROLOGY SUBJECT CODE: BMEC-3601 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the concept of measurements and instruments and their working standards and its calibration for precision and accuracy design engineering. Students should be able to understand various types of errors in measuring processes. They will also gain knowledge of linear measurements-vernier scale and micrometer, vernier height gauge, comparators; Angular measurements, surface roughness, angle and form of threads in Mechanical engineering.

S.No.	Contents	Contact
		Hrs
1	General Concepts	10 Hrs
	Need and classification of measurements and instruments; basic and	
	auxiliary functional elements of a measurement system; Mechanical	
	versus electrical / electronic instruments; primary, secondary and working	
	standards. Limits, fits and tolerances: Concept of interchangeability, types	
	of in interchangeability, need for standard systems of limits, fits and	
	tolerances, BIS: 919:1963 standard system, selection of limits and fits	
	exercises on limits, fits and tolerances, design principles for limit gauges.	
	Taylor's principle, types of limit gauges tolerance on limit gauges,	
	tolerance analysis in manufacturing and assembly	
	Static and Dynamic Characteristics of Instruments	
	Range and span, accuracy and precision, calibration, hysteresis and dead	
	zone, sensitivity and linearity, threshold and resolution; speed of response,	
	lag, fidelity and dynamic error, dead time and dead zone. Zero, first and	
	second order systems and their response to step, ramp and sinusoidal input	
	signals.	
3	Errors in Measurement	14 Hrs
	Sources of errors, systematic and random errors; statistical analysis of test-	
	data, probable error and probability tables, rejection of test data, error	
	propagation; Design and planning of experiments and report writing.	
	Metrology	
	Line, end and wavelength standards; linear measurements - vernier scale	
	and micrometer, vernier height gauge and depth gauge; comparators - their	
	types, relative merits and limitations; Angular measurements - sine bar,	
	clinometer, angle gauge; concept and measurement of straightness and	
	flatness by interferometry; surface roughness - specifications and	
	measurement, Measurement of major diameter, minor diameter, effective	
	diameter, pitch, angle and form of threads for internal and external	

	threads; measurement of tooth thickness, pitch and checking of profile for	
	spur gears.	
	Alignment and testing methods, concepts of co-ordinate measuring	
	machine	
5	Functional Elements	13 Hrs
	Introduction to sensors and transducers, types of sensors, review of electro-mechanical sensors and transducers - variable resistance, inductance and capacitive pick-ups, photo cells and piezo-electric transducers and application of these elements for measurement of position / displacement, speed / velocity / acceleration, force and liquid level. Resistance strain gauges, gauge factor, bonded and unbounded gauges, surface preparation and bonding technique signal conditioning and bridge circuits, temperature compensation, application of strain gauges for direct, bending and torsional loads. Introduction to amplifying, transmitting and recording devices.	
	Pressure and Flow Measurement	
	Bourdon tube, diaphragm and bellows, vacuum measurement – Mcleod	
	gauge, thermal conductivity gauge and ionization gauge; Dead weight	
	gauge tester. Electromagnetic mux meters, unra-some now meters and not	
7	Tomporature Measurement	Q Una
/	Thermal expansion methods - himetallic thermometers liquid-in-glass	0 111 5
	thermometer and filled-in-system thermometers: thermo-electric sensors -	
	common thermo couples reference junction considerations special	
	materials and configurations: metal resistance thermometers and	
	thermistors: ontical and total radiation pyrometers: calibration standards	
	Speed, Force, Torque and Shaft Power Measurement	
	Mechanical tachometers, vibration reed tachometer and stroboscope:	
	proving ring, hydraulic and pneumatic load cells, torque on rotating shafts:	
	Absorption, transmission and driving dynamo meters.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3601.1	To describe basic concepts of mechanical measurement, errors in measurements and uncertainty
CO2	BMEC-3601.2	To identify the type of measurement instruments and their relevant specification etc. which can be used in a particular process parameter measurement selection?
CO3	BMEC-3601.3	To explain the theory of stress & strain, force and torque measurements
C04	BMEC-3601.4	To measure the speed, force, torque and shaft pressure of various measuring components

Text Books:

1. E.O Doebelin, Measurement System: Application and Design, McGraw Hill, 2012

2. J.P Holman, Experimental Methods for Engineers, McGraw Hill, 2013

3. D.S Kumar, Mechanical Measurement and Control, Metropolitan Book Co., 2000

Reference Books:

1. Figliola, R. S., & Beasley, D. E. Theory and design for mechanical measurements. John Wiley &Sons., 2020.

2. R.K Jain, Engineering Metrology, Khanna Publishers, 1998

3. B.C Kuo, Automatic Control systems, Prentice Hall,2006

- 1. Measurement Science and Technology (https://iopscience.iop.org/journal/0957-0233)
- 2. Precision Engineering (https://www.sciencedirect.com/journal/precision-engineering)

SUBJECT TITLE: DESIGN OF MACHINE ELEMENTS-II SUBJECT CODE: BMEC-3602 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	1	0	5

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts of transmission system and functions of springs, gears, flywheels, bearings etc. in machine design and concept of concurrent engineering. Students should be able to understand various types of design processes for static and dynamic application. They will also gain knowledge of kinematic synthesis and different applications in Mechanical engineering.

S.No.	Contents	Contact Hrs
1	Transmission Drives	15 Hrs
	Belt and rope drives: Basics, Characteristics of belt drives, selection of	
	flat belt, Design of Flat belt, V-belt and rope (steel wire), Design of the	
	pulley for the same, Chain Drives: Basics, Roller chains, polygonal	
	effect, power rating, selection of chain, Gear drives: Standard system of	
	gear tooth and gear module, gear tooth failure, strength of gear tooth,	
	terminology of spur, helical, bevel, worm and worm wheel, Design of	
	spur, helical, straight bevel gears, worm and worm wheel	
2	Bearings Slider	17 Hrs
	Principle of hydrodynamic lubrication, modes of lubrication, Reynolds	
	equation, bearing performance parameters, slider bearing design	
	Roller	
	lypes, selection guidelines, static and dynamic load carrying capacity,	
	Stribeck's equation, equivalent bearing load, load life relationship,	
2	selection of bearing, comparison of roller and slider bearing	10 11
5	Design of Flywheel	13 Hrs
	Introduction, Energy stored in a flywneel, stresses in a rim, design	
	Considerations	
	Springs Types: and styles of helical compression spring: stress and deflection	
	Types, end styles of hencal compression spring, stress and deflection	
	belical spring and multi leaf spring	
1	Clutches	10 Hrs
-	Design of contact clutches i.e. plate multi-disc cone and centrifugal	10 111 5
	clutches	
	Brakes	
	Design of band, disc, block with shoe and internal expanding brakes.	

CO1	BMEC-3602.1	Able to design components of mechanical systems
CO2	BMEC-3602.2	Capable of designing mechanical components and assemblies for industrial & domestic applications
CO3	BMEC-3602.3	Capable of modifying the existing systems and developing better components
C04	BMEC-3602.4	Analyze and design of various types of clutches and brake of an automobile, vehicle

Text Books:

- 1. Joseph E. Shigley, Charles Russell Mischke, Richard Gordon Budynas, Mechanical Engineering Design, McGraw-Hill.2006.
- 2. Robert C. Juvinall Fundamentals of machine component design, JohnWiley Eastern.2008
- 3. V.K Jadon, Analysis and design of machine elements, I.K. International.2010

Reference Books:

- 1. V.B Bhandari, Design of Machine elements, Tata Mc-Graw. Hill.2006
- 2. S.S Jolly, Design of machine elements-II, DhanpatRai and Co.2012.

- 1. Research in Engineering Design (<u>https://www.springer.com/journal/163</u>)
- 2. Renewable and Sustainable Energy Reviews (https://www.sciencedirect.com/journal/renewable-and-sustainable-energy-reviews)

SUBJECT TITLE: HEAT TRANSFER SUBJECT CODE: BMEC-3603 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts of heat transfer system and its modes. Students should be able to understand various heat transfer phenomenon for one dimensional and three dimensional steady state for static and dynamic application. They will also gain knowledge of different heat laws and equation for different applications in Mechanical engineering.

S.No.	Contents	Contact
1		Hrs
1	Concept of heat transfer, Difference between the subject of "Heat Transfer" and its parent subject "Thermodynamics". Different modes of heat transfer - conditions, convection, and radiation.	15 Hrs
	Fourier's law of heat conduction, coefficient of thermal conductivity, effect of temperature and pressure on thermal conductivity of solids, liquids and gases and its measurement. Three-dimensional general conduction equation in rectangular, cylindrical and spherical coordinates involving internal heat generation and unsteady state conditions. Derivation of equations for simple one dimensional steady state heat conduction from three dimensional equations for heat conduction though walls, cylinders and spherical shells (simple and composite), electrical analogy of the heat transfer phenomenon in the cases discussed above. Numerical Lumped parameter system, Heisler's chart and thermal boundary layer Mass Transfer: Basic Concepts: Diffusion mass transfer, Fick's law of diffusion, steady state molecular diffusion, convective mass transfer, momentum, heat and mass transfer analogy, convective mass transfer	
2	Correlations.	15 Hrs
	Concept of fin, classification of fins and their applications. Straight fins of uniform cross-section; e.g. of circular, rectangular or any other cross- section). Straight fins with varying cross-sectional area and having triangular or trapezoidal profile area. Circumferential fins of rectangular cross-section provided on the circumference of a cylinder. Fin performance: fin effectiveness and fin efficiency, total fin effectiveness, total fin efficiency. Optimum design of straight fin of rectangular and triangular profile area. Application of fins in temperature measurement of flow through pipes and determination of error in its measurement. Numerical.	10 111 5

3	Convection:	10 Hrs
	Free and forced convection. Derivation of three-dimensional mass,	
	momentum and energy conservation equations (with introduction to Tensor	
	notations).	
	Boundary layer formation, laminar and turbulent boundary layers (simple	
	explanation only and no derivation). Theory of dimensional analysis and its	
	application to free and forced convective. heat transfer. Analytical formulae	
	for heat transfer in laminar and turbulent flow over vertical and horizontal	
	tubes and plates. Numerical.	
	Newton's law of cooling. Overall coefficient of heat transfer. Different	
	design criterion for heat exchangers. Log mean temperature difference for	
	evaporator and condenser tubes, and parallel and counter flow heat	
	exchangers, Calculation of number and length of tubes in a heat exchanger	
	effectiveness and number of transfer units(NTU); Numerical.	
4	Convection with Phase Change (Boiling and Condensation):	10 Hrs
	Pool boiling, forced convection boiling, heat transfer during pool boiling of	
	a liquid. Nucleation and different theories of nucleation, different theories	
	accounting for the increased values of h.t.c. during nucleate phase of boiling	
	of liquids; different phases of flow boiling (theory only), Condensation,	
	types of condensation, film wise condensation on a vertical and inclined	
	surface, Numerical. Wien's displacement law	
	Radiation:	
	Process of heat flow due to radiation, definition of emissivity, absorptivity,	
	reflectivity and transmissivity. Concept of black and grey bodies, Plank's	
	law of nonchromatic radiation. Kirchoff's law and Stefan Boltzman's law.	
	Interchange factor. Lambert's Cosine law and the geometric factor.	
	Intensity of Radiation (Definition only), radiation density, irradiation,	
	radiosity and radiation shields. Derivation formula for radiation exchange	
	between two bodies using the definition of radiosity and irradiation and its	
	application to cases of radiation exchange between three or four bodies (e.g.	
	simple bodies like two perallel surfaces, concentric evaluation to	
	enveloped by another body etc. Error in Temperature massurement by a	
	thermocouple probe due to radiation losses	
	mennocoupie probe due to radiation losses.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3603.1	To understand the basic modes of heat transfer
CO2	BMEC-3603.2	Account for the consequence of heat transfer in thermal analyses of engineering systems
CO3	BMEC-3603.3	Obtain numerical solutions for conduction, convection and radiation heat transfer problems
C04	BMEC-3603.4	Design heat exchangers using LMTD and NTU methods

Text Books:

1. Frank P. Incropera and David P. De Witt, Fundamentals of Heat and Mass transfer, John Wiley.2014

- 2. P.S. Ghoshdastidar, Heat Transfer, Oxford Press.2008
- 3. D.S. Kumar, Fundamentals of Heat and Mass Transfer, SK Kataria & Sons (6th/7th Edition).2002
- 4. A.J. Chapman, Heat Transfer, McGraw Hill Book Company, New York.2004

Reference Books:

- 1. J.P. Holman, Heat Transfer, Tata McGraw-Hill Publishing Company Ltd.(Special Indian Edition).2006
- 2. YunusA.Cengel, Heat and Mass Transfer, Tata McGraw Hills Education Private Ltd (Special Indian Edition).2008
- 3. Eckert & Drake, Heat and Mass Transfer, McGraw Hill Book Company, New York.2012

- 1. Energy (https://www.sciencedirect.com/journal/energy)
- 2. Advances in Heat Transfer (https://www.sciencedirect.com/bookseries/advances-in-heat-transfer)

SUBJECT TITLE: FLUID MACHINERY SUBJECT CODE: BMEC-3604 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts of impact of jet with respect to hydro turbo machines. Students should be able to understand and design various types of hydraulic turbines and their phenomenon for static and dynamic application. They will also gain knowledge of different hydraulic pumps and their characteristics for different applications in Mechanical engineering.

S.No.	Contents	Contact Hrs
1	General Concepts : Impulse momentum principle; jet impingement on stationary and moving flat plates, and on stationary or moving vanes with jet striking at the centre and tangentially at one end of the vane; calculations for force exerted, work done and efficiency of jet. Basic components of a turbo machine and its classification on the basis of purpose, fluid dynamic action, operating principle, geometrical features, path followed by the fluid and the type of fluid etc. Euler's equation for energy transfer in a turbo machine and specifying the energy transfer in terms of fluid and rotor kinetic energy changes.	15 Hrs
2	Pelton Turbine:Component parts and operation; velocity triangles for different runners, work output; Effective head, available power and efficiency; design aspects such as mean diameter of wheel, jet ratio, number of jets, number of buckets with working proportionsFrancis and Kaplan Turbines: Component parts and operation velocity triangles and work output; working proportions and design parameters for the runner; Degree of reaction; Draft tubes - its function and types. Function and brief description of commonly used surge tanks, Electro- Mechanical governing of turbines	15 Hrs
3	Centrifugal Pumps: Layout and installation; Main elements and their functions; Various types and classification; Pressure changes in a pump - suction, delivery and manometric heads; vane shape and its effect on head-capacity relationships; Departure from Euler's theory and losses; pump output and efficiency; Minimum starting speed and impeller diameters at the inner and outer periphery; Priming and priming devices, Multistage pumps - series and parallel arrangement; submersible pumps. Construction and operation; Axial and mixed flow pumps; Trouble shooting - field	10 Hrs

	problems, causes and remedies.	
	Similarity Relations and Performance Characteristics:	
	Unit quantities, specific speed and model relationships, scale effect;	
	cavitation and Thoma's cavitation number; Concept of Net Positive	
	Suction Head (NPSH) and its application in determining turbine / pump	
	setting	
4	Reciprocating Pumps:	10 Hrs
	Components parts and working; pressure variations due to piston	
	acceleration; acceleration effects in suction and delivery pipes; work done	
	against friction; maximum permissible vacuum during suction stroke; Air	
	vessels	
	Hydraulic Devices and Systems:	
	Const., operation and utility of simple and differential accumulator,	
	intensifier, fluid coupling and torque converter, Air lift and jet pumps;	
	gear, vane and piston pumps, Hydraulic Rams	
	Fan and blowers: Constructional details, governing equation, losses and	
	performance curves.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3604.1	To understand the basic modes of heat transfer
CO2	BMEC-3604.2	Account for the consequence of heat transfer in thermal analyses of engineering systems
CO3	BMEC-3604.3	Obtain numerical solutions for conduction, convection and radiation heat transfer problems
C04	BMEC-3604.4	Design heat exchangers using LMTD and NTU methods

Text Books:

1. R.L. Daughaty, Hydraulic Turbines, McGraw Hill. 2009

2. JagdishLal, Hydraulic Machines by Metropolitan Book Co 1998

3. D.S. Kumar, Fluid Mechanics and Fluid Power Engineering, SK Kataria and Sons, 1996

Reference Books:

1. K. Subramaniam, Hydraulic Machines, Tata McGraw Hill.2007

2. R.K. Purohit., Hydraulic Machines, Scientific Publishers. 2011

3. Wright, T., &Gerhart, P. (2009). Fluid machinery: application, selection, and design. CRC press.

- 1. International Journal of Fluid Machinery and Systems (https://www.jstage.jst.go.jp/article/ijfms/9/1/9_75/_article/-char/ja/)
- 2. International Journal of Rotating Machinery (https://www.hindawi.com/journals/ijrm/1995/209310/)

DEPARTMENTAL ELECTIVE-I (6th SEM)

SUBJECT TITLE: I. C. ENGINES SUBJECT CODE: BMEC-3605 SEMESTER: 6th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction to IC Engines: Definition of engine; Heat Engine,	12 Hrs
	Historical Development of IC Engines, Classification & Nomenclature,	
	Application of IC Engines, Air Standard Cycle, Carnot Cycle, Sterling	
	Cycle, Ericson Cycle, Otto Cycle, Diesel cycle, Dual Cycle,	
	Thermodynamics Analysis of these cycles	
	Actual Working of I.C. Engine: Working of 4 stroke petrol & diesel	
	engines and their valve timing diagram, working of 2-stroke petrol &	
	diesel engines & their valve timing diagrams, comparison of two stroke	
	& four stroke engines, Actual working of 2 & 4 stroke gas engine and	
	their valve diagram.	
	Fuel Air Cycles and their analysis: Introduction to fuel air cycles and	
	their significance, composition of cylinder gases, variable specific heats,	
	Dissociation, effect of no. of moles, comparison of air standards & fuel	
	air cycles, effect of operating variable like compression ratio, fuel air	
	ratio, actual cycles and their analysis; Difference between Actual and	
	Fuel-Air Cycle, Actual and Fuel-Air Cycles for S.I. and C.I. Engines.	
2	IC Engine Fuels: Introduction, types of fuels, solid, liquid and gaseous	11 Hrs
	fuels, chemical structure of petroleum, petroleum refining process,	
	important qualities of S.I. & C.I. Engine fuels and their rating.	
	Combustion of fuels; Calorific valves of fuels, theoretical determination	
	of CV of fuel, combustion equation for hydrocarbon fuels, determination	
	of minimum air required for combustion, conversions of volumetric	
	analysis of mass analysis, Determination of air supplied from volumetric	
	analysis of Dry flue gases, Determination of excess air supplied,	
	Determination of % of carbon in fuel burning to CO & CO2,	
	Determination of minimum quantity of air supplied.	
	Fuel Supply System: Fuel Supply System and fuel pumps, properties of	
	air iuei mixiure, a sample carburetor an its working, approximate analysis	
	of simple carburetor, Actual air fuel ratio of single jet carburetor, Exact	
	analysis of single jet carburetor, ideal requirements from a carburetor,	
	infinitations of single jet carburetor, different devices used to meet the	
	requirements of an ideal carburetor. Different modern carburetors,	

in in	ntroduction to petrol injection, fuel injection systems for C.I.	
3 F ai of ar lin re in E C gc G C	Tuel Supply System: Fuel Supply System and fuel pumps, properties of ir fuel mixture, a sample carburetor an its working, approximate analysis f simple carburetor, Actual air fuel ratio of single jet carburetor, Exact nalysis of single jet carburetor, ideal requirements from a carburetor, mitations of single jet carburetor, different devices used to meet the equirements of an ideal carburetor. Different modern carburetors, ntroduction to petrol injection, fuel injection systems for C.I. Engines: Classification of injection systems, injection pump, injection pump overnor, mechanical governor, fuel injector, Nozzle, Injection of S.I. Engines, Fuel Filters.	12 Hrs
4 C In pr af m cc Su In su Su Su Su Su Su Su Su Su Su Su Su Su Su	Combustion in S.I. Engines: Introduction, Stages of Combination in S.I. Engine, Flame font ropagation, factor influencing the flame speed, ignition lag and factors ffecting the lag, Abnormal combustion and knocking, control and heasurement of knock, rating of S.I. Engine fuels and anti knock agents, ombustion chambers of S.I. Engines. upercharging: Introduction, purpose of supercharging, type of superchargers, analysis of uperchargers, performance of superchargers, Arrangement of upercharger and its installation, Turbo charged engines, supercharging f S.I. & C.I. Engines. Limitations of supercharging. Measurement of friction horse power, brake horse power, indicated horse ower, measurement of speed, air consumption, fuel consumption, heat arried by cooling water, heat carried by the exhaust gases, heat balance heet, governing of I.C. Engines, performance of S.I. Engines, Performance parameters, performance of S.I. Engines,	10 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3605.1	To teach students the operating characteristics and thermodynamic analysis
		of common internal combustion engine cycles.
CO2	BMEC-3605.2	To teach students to analyze the combustion process of common fuels
CO3	BMEC-3605.3	To make students aware of the roles of fluid flow and heat transfer in engine operation.
C04	BMEC-3605.4	To teach students methods to mitigate engine vibration, friction, and wear

Text Books:

- 1. V. Ganesan, Internal Combustion Engines, Prentice Hall.2008
- 2. V. M. Damundwar, A Course in Internal Combustion Engines, Dhanpat Rai.2006
- 3. John B. Heywood, Internal combustion engine fundamentals McGraw-Hill,2019

Reference Books:

1. Colin R. Ferguson, Allan Thomson, Kirkpatrick Internal combustion engines: applied thermo sciences, John Wiley & Sons.2008

2. Richard Stone, Introduction to Internal Combustion Engines Society of Automotive Engineers,2010

- 1. Progress in Energy and Combustion Science (https://www.sciencedirect.com/journal/progress-in-energy-and-combustion-science)
- 2. International Journal of Engine Research (https://journals.sagepub.com/home/JER

DEPARTMENTAL ELECTIVE-I (6th SEM)

SUBJECT TITLE: NON-DESTRUCTIVE TESTING SUBJECT CODE: BMEC-3606 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction:	9 Hrs
	Classification of techniques of material testing, Need and Significance	
	of Non Destructive Testing methods, type of Non Destructive testing	
	methods	
2	Radiographic Examination:	12 Hrs
	Radiant energy and radiography, practical applications, X-ray and	
	Gamma -ray equipment, effect of variables on radiographs, requirement	
	of a good radiograph, interpretation of radiograph, safety precautions,	
	Xeroradiography.	
3	Magna flux methods:	12 Hrs
	Basic principles, scope and applications, magnetic analysis of steel bars	
	and tubing magnetization methods, equipment, inspection medium,	
	preparation of surfaces Fluorescent Penetration inspection,	
	Demagnetization.	
4	Electrical and ultrasonic Methods:	12 Hrs
	Basic principles, flaw detection in rails and tubes (Sperry Detector),	
	Ultrasonic testing surface roughness, moisture in wood, Detection of	
	defects in ferrous and non-ferrous metals, plastics, ceramics,	
	measurement of thickness, hardness, stiffness, sonic material analyzer,	
	proof tests, concrete test hammer.	
	Photoelasticity:	
	Concept and applications of Plane and circular polarization, Photo	
	stress, models.	

CO1	BMEC-3606.1	To understand need and Significance of Non Destructive Testing methods in
		engineering perspective
CO2	BMEC-3606.2	To select an appropriate NDT technique as per requirement
CO3	BMEC-3606.3	The student shall be able to set various process parameters and control the
		NDT process for the desired output parameters
C04	BMEC-3606.4	The student shall be competent enough to make use of modern tools and

software's for analyzing and solving real life problems

Text Books:

1. H.S. Shan, Manufacturing Processes, Vol.I., Pearson Publishers., 2002

2. P. N. Rao, Manufacturing Technology, Foundry, Forming & Welding, Tata McGraw Hill. 2006

Reference Books:

- 1. H.E. Davies, G.E Troxell and GFW Hauck, The testing of Engg materials, McGraw Hill. 2014
- 2. W.H Armstrong, Mechanical Inspection, McGraw Hill.2010

- 1. Materials Today Proceeding (https://www.sciencedirect.com/journal/materials-today-proceedings)
- 2. The International Journal of Advanced Manufacturing Technology (https://www.springer.com/journal/170)

DEPARTMENTAL ELECTIVE-I (6th SEM)

SUBJECT TITLE: PRODUCT DESIGN AND DEVLOPMENT SUBJECT CODE: BMEC-3607 SEMESTER: 6th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Visual Design:	9 Hrs
	Basic elements and concept of visual design-line color, Balance	
	proportion, Size shape mass, unity and variety, Special relationships and	
	composition in two and three dimensions.	
2	Form and Color:	12 Hrs
	Elementary forms their characteristics and significance in design. Form	
	transition, Form in relation to ergonomics, material and manufacturing	
	process, color as an element of design, color clarification dynamics,	
	interrelation of colors, colors and traditions; Psychological use of color	
	form and material.	
3	Product Graphics:	12 Hrs
	Meaning and objectives of product graphics. Basic principles of graphic	
	design, Visual communication aspects of product graphics, Graphics of	
	displays and control panels.	
4	Product Detailing:	12 Hrs
	Standard fastening and joining details in different materials; Temporary	
	and permanent joints, Detailing for plastic products, Detailing for	
	fabricated products in sheet metal	
	Products Development:	
	Definition and objective, Role of designer in product development.	
	Manufacturing and economic aspects of product development, Product	
	promotions, product developments.	

CO1	BMEC-3607.1	Describe the characteristics used for product design and development.
CO2	BMEC-3607.2	Assess the customer requirements in product design
CO3	BMEC-3607.3	Identify various aspects of design such as industrial design, design for manufacture, assembly, service and quality and product architecture.
C04	BMEC-3607.4	Explain various principles and technologies used for the preparation of prototype.

Text Books:

- 1. W.H. Mayal, Industrial Design for Engineers, London Liifee Books Ltd.2006
- 2. Huchingson R. Dale, New Horizons for Human Factors in Design, McGraw Hill.2008
- 3. N.L. Svensson, Engineering Design. 2002

Reference Books:

- 1. R. Matousek, Engineering Design. 2004
- 2. K. J. Mccormick (Ed), Human Factor Engineering, McGraw Hill. 2005

- 1. International Journal of Production Research (https://www.tandfonline.com/journals/tprs20)
- 2. Integrative Production Technology for High-Wage Countries (https://link.springer.com/book/10.1007/978-3-642-21067-9)

DEPARTMENTAL ELECTIVE-I (6th SEM)

SUBJECT TITLE: MECHATRONICS SUBJECT CODE: BMEC-3608 SEMESTER: 6th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction: Definitions, trends, control systems, microprocessor /	9 Hrs
	micro controller based controllers, PC based controllers, applications:	
	SPIM, robot, UNC machine, FMS, UIM.	
	Sensor rechnology: Sensor and transducers, terminology, displacement,	
	gauges pressure temperature thermosouples PTDs thermisters light	
	sensors - nhotoelectric sensors IR sensors sensor selection	
	Signal Conditioning: Introduction the operational amplifier protection	
	filtering Wheatstone bridge digital signals multiplexers data	
	acquisition, digital signal processing, pulse-modulation	
2	Precision Mechanical Actuation: Pneumatic actuation systems, electro-	12 Hrs
-	pneumatic actuation systems, hydraulic actuation systems, electro-	12 1115
	hydraulic actuation systems, mechanical systems, types of motion,	
	kinematics, inverse kinematics, timing belts, ball screw and nut, linear	
	motion guides, linear bearings, harmonic transmission, bearings, motor /	
	drive selection. Electronic Devices and Circuits: Semiconductor	
	devices, diodes and LEDS, zener diodes and voltage regulator, inductive	
	kick, bandwidth, frequency %& response of a measurement system,	
	bipolar transistor circuits, amplifiers.	
3	Electromechanical Drives: Relays and solenoids, stepper motors, DC	12 Hrs
	brushed and brushless motors, DC servomotors, AC / DC motors for	
	non-servo motion drives, braking methods, pulse width modulated,	
	Bipolar driver, Mosfet drives, SCR drives, variable frequency drives	
	Digital Electronics: Digital logic, number systems, logic gales,	
	Microprocessors: Control microcomputer structure microcontrollers	
	digital interfacing analog interfacing DAC ADC applications	
4	Input / Output Systems: Interfacing input / output ports interface	12 Hrs
	requirements, peripheral interface adapters, serial communication	12 111 5
	interface, direct memory access.	
	Control System: System transfer function, Laplace transformation and	
	its applications, continuous and discrete processes, proportional control,	
	integral control, differential control, PID control, digital controllers,	

control system performance, controller tuning, adaptive control, frequency response, PLC, PMC, introduction to fuzzy logic and neural networks.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3608.1	Understand key elements of Mechatronics system, representation into block diagram
CO2	BMEC-3608.2	Understand concept of transfer function, reduction and analysis
CO3	BMEC-3608.3	Interfacing of Sensors, Actuators using appropriate DAQ micro-controller
C04	BMEC-3608.4	Time and Frequency domain analysis of system model (for control application)

Text Books:

- 1. Kamm, 'Understanding Electro-Mechanical Engineering An Introduction to Mechatronics', <u>Prentice Hall of India.</u>
- 2. Koren, 'Computer Control of Manufacturing System', McGraw Hill.
- 3. Groover, 'Production Systems and CIM', Prentice Hall of India.

Reference Books:

- 1. Maleki, 'Flexible Manufacturing Systems', Prentice Hall of India.
- 2. B.C. Kuo, 'Feedback Control Systems', Prentice Hall of India.
- 3. SabriCetinkunt, 'Mechatronics', Wiley Publications, 2006.

- 1. Tribology International (https://www.sciencedirect.com/journal/tribology-international)
- 2. Materials Today Proceeding (<u>https://www.sciencedirect.com/journal/materials-today-proceedings</u>)

DEPARTMENTAL ELECTIVE-I (6th SEM)

SUBJECT TITLE: TOOL DESIGN SUBJECT CODE: BMEC-3609 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction: General requirements to machine tools, Machine tool	9 Hrs
	design recommendations, Classification of motions to shape surface,	
	Machine tool drives for rectilinear motion, Periodic motion, reversing	
	motion etc.	
	Kinematics of Machine Tools: Kinematics or gearing diagram of Lathe,	
	drilling machine, milling machine etc. Main drive and feed drive,	
	principal specification of machine tools.	
2	Design of Kinematics Scheme: Methods to determine transmission	12 Hrs
	ratios for drives. Development of kinematic scheme, minimum	
	of transmission, transmission groups, Determination of number of	
	teeth on gears.	
	Speed and Feed Boxes: General requirement, Design of gear trains,	
	types of speed boxes, speed changing devices, feed boxes, characteristics	
	of feed mechanism, types of rapid traverse mechanisms, variable devices.	
3	Spindle Design and Spindle Bearings: Main requirements, Materials	12 Hrs
	and details of spindle design, spindle bearings, bearings, types of bearing	
	sand their selections, bearing materials.	
	Bed, Columns, Tables and Ways: Materials, typical constructions and	
	Design.	
4	Machine Tools Control Systems: Requirement of control system,	12 Hrs
	selection and construction of control systems, Mechanical control system,	
	predilection control, remote control safety devices.	
	Machine Tool Dynamics: Dynamic performance, dynamic and elastic	
	system of Machine, tools. Dynamics of cutting forces, tool chatter.	

CO1	BMEC-3609.1	To develop a solution oriented approach by in depth knowledge of Machine Tool Design
CO2	BMEC-3609.2	To address the underlying concepts, methods and application of Machine Tool Design
CO3	BMEC-3609.3	To analyze the different types of die structure
C04	BMEC-3609.4	Study about bending and forming dies

Text Books:

- 1. Sen and Bhattacharya, 'Machine Tools Design', CBS Publishers.
- 2. N.K. Mehta, 'Machine Tool Design', Tata McGraw Hill.

Reference Books:

- 1. N. Acherkan, 'Machine Tool Design', Four Volumes, Mir Publishers.
- 2. P.H. Joshi, 'Machine Tools Handbook: Design and Operation', McGraw Hill Professional'

- 1. Materials Today Proceeding (<u>https://www.sciencedirect.com/journal/materials-today-proceedings</u>)
- 2. The International Journal of Advanced Manufacturing Technology (https://www.springer.com/journal/170)

DEPARTMENTAL ELECTIVE-I (6th SEM)

SUBJECT TITLE: STATISTICAL AND NUMERICAL METHODS SUBJECT CODE: BMEC-3610 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts of data collection and distribution for approximation of system problems. Students should be able to understand various types of optimization techniques for different application. They will also gain knowledge of ordinary and partial differential equations and its applications in Mechanical engineering.

S.No.	Contents	Contact	
		Hrs	
1	Data, its Arrangements and Measures:	9 Hrs	
	Introduction: Data, Data Array; Frequency Distribution Construction and		
	Graphic representation. Mean, median, mode and standard deviation.		
	Probability and Probability Distributions:		
	Introduction: Definition probability and Probability Distribution;		
	Conditional probability; Random variables, Poisson, Normal and		
	Binomial distributions		
	Sampling and Sampling Distributions:		
	Introduction: Fundamentals of Sampling, Large samples, small samples;		
	Normal sampling distributions; Sampling distribution of the means, t-		
	Distribution, F-Distribution, Chi-square Distribution.		
2	Errors in Numerical Calculations:	12 Hrs	
	Errors and their analysis, general error formula, errors in a series		
	approximation		
	Solution of Algebraic and Transcendental Equations:		
	Bisection method, iteration method, Method of false position, Newton-		
	Raphson method, solution of systems of non linear equations.		
	Interpolation Method:		
	Finite difference, forward, backward and central difference, Difference		
	of polynomial, Newton's formulae for interpolation, central difference		
	interpolation formulae, Interpolation with unevenly spaced points,		
	Newton's general interpolation formula, interpolation by iteration.		
3	Numerical Differentiation and Integration:	12 Hrs	
	Numerical differentiation, maximum and minimum values of a tabulated		
	function; Numerical Integration-trapezoidal rule, Simpson1/3 rule,		
	Simpsons 3/8 rule, Newton-cots integration formulae; Euler-Meclaurin		
	formula, Gaussian integration(One dimensional only)		

	Solution of Linear Systems of Equations: Gauss Elimination method (fall and banded symmetric and unsymmetric systems), Gauss Jordon method. Eigen value problems (Power method only).	
4	Numerical solution of ordinary and partial differential equations: Solution by Taylor's series, Prediction -correction method, Boundary value problems, Prediction corrector method, Euler's and modified Euler's method, Runge-Kutta method, finite difference methods. Finite difference approximation to derivatives, Solution to Laplaces equation- Jacobi's method, Gauss -Siedel method.	12 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-3610.1	To understand the basic concepts of data collection and distribution for approximation of system problems
CO2	BMEC-3610.2	To understand various types of optimization techniques for different application
CO3	BMEC-3610.3	To implement the use of differentiation and Integration in numerical methods
C04	BMEC-3610.4	To gain knowledge of ordinary and partial differential equations and its applications in Mechanical Engineering

Text Books:

1. S. S. Sastry, Introductory methods of numerical analysis by: Prentice Hall of India. 2005

2. V. RajaRaman, Computer Oriented Numerical Methods. 2008

3. S.D. Conte, Cari De Boor, Elementary Numerical Analysis, McGraw Hill.2012

Reference Books:

1. B. Cornahn, Applied Numerical Methods, John Wiley.2013

2. Richard I. Levin, S. David., Rubin Statistics for Management, Pearson. 2012

- 1. European Journal of Operational Research (<u>https://www.sciencedirect.com/journal/european-journal-of-operational-research</u>)
- 2. IBM Journal of Research and Development (https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520)

SUBJECT TITLE: MECHANICAL MEASUREMENTS AND METROLOGY LAB SUBJECT CODE: BMEC-3671 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact Hrs
1	Measurement of an angle with the help of sine bar	2 Hrs
2	Measurement of surface roughness of a machined Plate, Rod and Pipe	2 Hrs
3	Measurement of gear elements using profile projector	2 Hrs
4	Measurement of effective diameter of external threads using Three wire method	2 Hrs
5	Measurement of thread element by Tool makers microscope	2 Hrs
6	Calibration of a pressure guage with the help of a dead weight guage tester	2 Hrs
7	Use of stroboscope for measurement of speed of shaft	2 Hrs
8	Use of pitot tube to plot velocity profile of a fluid through a circular duct	2 Hrs
9	Preparation of a thermocouple, its calibration and application for temperature measurement	2 Hrs

CO1	BMEC-3671.1	Use of various measuring instruments as per their practical applications
CO2	BMEC-3671.2	To measure the angle, surface roughness, gear profile and effective of various machined elements
CO3	BMEC-3671.3	To measure the pressure and speed as per the practical approach
C04	BMEC-3671.4	To analyze and measure the temperature using thermocouples

SUBJECT TITLE: HEAT TRANSFER LAB SUBJECT CODE: BMEC-3672 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact Hrs
1	Determination of thermal conductivity of:	4 Hrs
	1. a solid insulating material by slab method	
	2. powder materials by concentric spheres method / or by some	
	transient heat transfer technique	
	3.a metal by comparison with another metal by employing two bars	
	when kept in series and /or in parallel under different boundary	
	conditions	
	4. Liquids by employing thin layer	
2	Determination of coefficient of heat transfer for free/forced convection	4 Hrs
	from the surface of - cylinder / plate when kept:	
	- along the direction of flow	
	- perpendicular to the direction of flow	
	- inclined at an angle to the direction of flow	
3	To plot the pool boiling curves for water and to determine its critical	2 Hrs
	point	
4	Determination of heat transfer coefficient for	2 Hrs
	i) film condensation ii) drop-wise condensation	
5	Determination heat transfer coefficient by radiation and hence find the	2 Hrs
	Stefan Boltzman's constant using two plates/two cylinders of same size	
	by making one of the plates/cylinders as a black body.	
6	Determination of shape factor of a complex body by an analog technique	2 Hrs
7	To plot the temperature profile and to determine fin effectiveness and fin	4 Hrs
	efficiency for	
	i) A rod fin when its tip surface is superimposed by different	
	boundary condition like.	
	(a) Insulated tip	
	(b) Cooled tip	
	(c) Temperature controlled tip	
	ii) Straight triangular fins of various sizes and optimization of fin	
	proportions	
	iii) Circumferential fins of rectangular/triangular section	

CO1	BMEC-3672.1	Understand the effects of various heat transfer modes
-----	-------------	---

CO2	BMEC-3672.2	To experimentally determine the thermal conductivity of insulating rod and nowders
CO3	BMEC_3672.3	Comparative evaluation between natural and forced conventions through
COS	DIVIEC-3072.3	experimental approach
C04	BMEC-3672.4	Determine the experimentation on radiation for finding out the value of
		Stefan Boltzmann's constant and emissivity of metallic surface

SUBJECT TITLE: FLUID MACHINERY LAB SUBJECT CODE: BMEC-3673 SEMESTER: 6 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact
		Hrs
1	Determination of various efficiencies of Hydraulic Ram	2 Hrs
2	To draw characteristics of Francis turbine/Kaplan Turbine	2 Hrs
3	To study the constructional features of reciprocating pump and to	2 Hrs
	perform test on it for determination of pump performance	
4	To draw the characteristics of Pelton Turbine	2 Hrs
5	To draw the various characteristics of Centrifugal pump	2 Hrs
6	Determine the effect of vane shape and vane angle on the performance of	2 Hrs
	centrifugal fan/Blower	
7	A visit to any Hydroelectric Power Station	2 Hrs

CO1	BMEC-3673.1	Interpret the dynamic action of liquid jets in developing motive forces on objects
CO2	BMEC-3673.2	Explain the concept of hydraulic ram and different types of turbine
CO3	BMEC-3673.3	Illustrate the concept of specific speed and unit quantities as applied to turbines and pumps
C04	BMEC-3673.4	Explain the construction of centrifugal pumps. Make use of the governing equations for head developed, power and efficiency of centrifugal pumps

SUBJECT TITLE: PERSONALITY DEVELOPMENT-II SUBJECT CODE: BMEC-3674 SEMESTER: 6 CONTACT HOURS/WEEK: Lecture (L) Tutorial

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

In this student has to attend the classes for improving their personality skills

CO1	BMEC-3674.1	Make use of techniques for self-awareness and self-development
CO2	BMEC-3674.1	Apply the conceptual understanding of communication into everyday practice
CO3	BMEC-3674.1	Understand the importance of teamwork and group discussions skills
C04	BMEC-3674.1	Develop time management and stress management
C05	BMEC-3674.1	Apply business etiquette effectively an engineer requires communicate fluently and develop all the soft and profession skills required for corporate sector
C06	BMEC-3674.1	Learn to overcome problems associated with personality

SUBJECT TITLE: MINOR PROJECT SUBJECT CODE: BMEC-3674 SEMESTER: 6 CONTACT HOURS/WEEK: Lec

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 100

In this student has to give a proposal to the project they have decided

CO1	BMEC-3674.1	To find out the relevant research gaps from the existing literature review
CO2	BMEC-3674.2	Analyze the problem formulation and identify the methodology of your work
CO3	BMEC-3674.3	Design the blue prints of your project
C04	BMEC-3674.4	Fabrication of your project

SYLLABUS

SEMESTER-VII

SUBJECT TITLE: INDUSTRIAL ENGINEERING SUBJECT CODE: BMEC-4701 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts of production, productivity and functions of management. Students should be able to understand various theories and approaches related to Industrial engineering. They will also gain knowledge of hierarchy, principles and dimensions of planning function of organizations

S.No.	Contents	Contact Hrs		
1	Introduction:	11 Hrs		
	Definition and scope of industrial engineering, Functions of industrial			
	engineering department and its organization, Qualities of an industrial			
	engineer, concept of production and productivity			
	Concepts of Management:			
	Functions of Management, Evolution of Management Thought: Taylor's			
	Scientific Management, Fayol's Principles of Management, Douglas Mc-			
	Gregor's Theory X and Theory Y, Mayo's Hawthorne Experiments,			
	Hertzberg's Two Factor Theory of Motivation, Maslow's Hierarchy of			
	Human Needs – Systems Approach to Management.			
2	Designing Organizational Structures:	9 Hrs		
	Concept, Importance and characteristics of organization, Types of			
	organization - Project, matrix and informal organization. Span of control,			
	Delegation of authority.			
	Management Planning, Decision Making and Control:			
	Steps, hierarchy, principles and dimensions of planning function,			
	Approaches to decision making, Decision support systems, Basic control			
	process, control parameters, principles of control			
	Forecasting models, aggregate production planning, material requirement			
	planning, lean and sustainable manufacturing			
3	Plant Location & Layout:	10 Hrs		
	Plant location: definition, factors affecting the plant location, comparison			
	of rural and urban sites-methods for selection. Plant layout: Needs for a			
	good layout, Different types viz. Product, process and combination			
	layouts, Introduction to layouts based on the GT, JIT and cellular			
	manufacturing systems, Development of plant layout.			
	Productivity:			
	Definition, reasons for low productivity, methods to improve productivity,			
	relation between work-study and productivity.			
4	Work Analysis:	10 Hrs		
	Definition, need and scope of Work Analysis. Method-study: Definition,			

objectives, step-by-step procedure, questioning techniques, charts and	
diagrams for recording data. Principles of motion economy; Development	
and installation of new method. Work-m easurement: Definition, various	
techniques of work-measurement such as work-sampling, stopwatch time	
study & its procedure, Job selection, Equipment and Forms used for work	
measurement, need for rating operator, methods of rating, allowances and	
their types, standard time. Standard data techniques.	
Value Engineering:	
Definition, Types of values, concept, phases and application of value	
engineering.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-4701.1	Understand the basic concepts of production, productivity and function of management
CO2	BMEC-4701.2	To gain knowledge of hierarchy, principles and dimensions of planning function of organizations
CO3	BMEC-4701.3	Determine the various theories and approaches related to Industrial Engineering
C04	BMEC-4701.4	Discuss the importance of Value Engineering in today's Industry

Text Books:

- 1. Philip EHick, Industrial Engineering & Management, Tata McGraw Hill. 2014
- 2. Lawrence D. Miles, Techniques of Value Analysis and Engineering, McGraw Hill. 2012
- 3. R.N. Nauhria, RajnishParkash, Management of Systems, Wheeler Publishers 2004

Reference Books:

- 1. S. Buffa, Modern Production Management, Wiley Eastern. 2008
- 2. H.S. Shan, Work Study and Ergonomics, DhanpatRai and Co. (P) Ltd. 2004

- 1. Computers & Industrial Engineering (<u>https://www.sciencedirect.com/journal/computers-and-industrial-engineering</u>)
- 2. Journal of Manufacturing Technology Management (https://www.emeraldgrouppublishing.com/journal/jmtm)

SUBJECT TITLE: OPERATION RESEARCH SUBJECT CODE: BMEC-4702 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact Hrs
1	Introduction: Introduction to Operations Research: Basics definition,	10hrs
	scope, objectives, phases, models and limitations of Operations Research.	
	Linear Programming Problem – Formulation of LPP, Graphical	
	solution of LPP. Simplex Method, Artificial variables, Big-M method,	
	two-phase method, degeneracy and unbound solutions.	
2	Transportation Problem : Formulation, solution, unbalanced	12hrs
	Transportation problem. Finding basic feasible solutions – Northwest	
	corner rule, least cost method and Vogel's approximation method.	
	Optimality test: the stepping stone method and MODI method.	
	Assignment Model: Formulation. Hungarian method for optimal	
	solution. Solving unbalanced problem. Traveling salesman problem and	
	assignment problem.	
	through 2 Machines Processing n Jobs through 3 Machines Processing	
	2 Jobs through m machines_ Processing n Jobs through m Machines	
3	Dynamic Programming: Characteristics of dynamic programming	12hrs
	Dynamic programming approach for Priority Management employment	121113
	smoothening, capital budgeting, Stage Coach/Shortest Path, cargo	
	loading and Reliability problems,	
	Game Theory: Competitive games, rectangular games, saddle point,	
	minimax (maxim in) method of optimal strategies, value of the game.	
	Solution of games with saddle points, dominance principle. Rectangular	
	games without saddle point – mixed strategy for 2 X 2 games.	
4	Replacement Models: Replacement of Items that Deteriorate whose	11hrs
	maintenance costs increase with time without change in the money value.	
	Replacement of items that fail suddenly: individual replacement policy,	
	group replacement policy.	
	Inventory Models: Inventory costs. Models with deterministic demand-	
	model (a) demand rate uniform and production rate infinite, model (b)	
	demand rate non-uniform and production rate infinite, model (c) demand	
	rate uniform and production rate finite.	
	Network flow models, safety stock inventory control systems	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1 BMEC-4702.1 Solve linear programming problems using appropriate techniques and

		optimization solvers, interpret the results obtained	
CO2	BMEC-4702.2	Determine optimal strategy for Minimization of Cost of shipping of products from source to Destination/ Maximization of profits of shipping products using various methods, Finding initial basic feasible and optimal solution of the Transportation problems	
CO3	BMEC-4702.3	Model competitive real-world phenomena using concepts from game theory. Analyse pure and mixed strategy games	
C04	BMEC-4702.4	Formulate Network models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these Network problems	

Text Books:

- 1. P. SankaraIyer, 'Operations Research', Tata McGraw-Hill. 2006
- 2. A.M. Natarajan, P. Balasubramani, A. Tamilarasi, 'Operations Research', <u>Pearson</u> <u>Education.2008</u>

Reference Books:

- 3. J.K. Sharma, 'Operations Research Theory & Applications,' Macmillan India Ltd. 2012
- 4. P.K. Gupta and D.S. Hira, 'Operations Research', S. Chand & Co. 1998
- 5. J.K. Sharma., 'Operations Research, Problems and Solutions', 3rdEdn., <u>Macmillan India Ltd.</u> 2012

- 1. European Journal of Operational Research (https://www.sciencedirect.com/journal/european-journal-of-operational-research)
- 2. IBM Journal of Research and Development (https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520)

SUBJECT TITLE: REFRIGERATION AND AIRCONDITIONING SUBJECT CODE: BMEC-4703 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts and principles of refrigeration and air conditioning systems. Students should be able to understand different types of aircraft refrigeration system and their performances under different conditions. They will also gain knowledge of refrigerants and factors influencing air conditioning.

S.No.	Contents	Contact Hrs
1	Basic Concepts: Definition of Refrigeration and Air conditioning;	13 Hrs
	Difference between Refrigeration and cooling; Difference between	
	Refrigeration and Air conditioning; Brief history of Refrigeration and	
	Air conditioning; Natural and Mechanical Refrigeration; Applications of	
	Refrigeration and Air conditioning; Definitions of refrigerant, cooling/	
	Refrigeration effect, cooling capacity, heating effect, heating capacity;	
	Units of refrigeration; Coefficient of performance and Energy Efficient	
	Ratio; COP of a refrigerator; and COP/EPR of a heat pump; Single Phase	
	Reversed Carnot cycle and its limitations; Two Phase Reversed Carnot	
	cycle and its limitations; Methods of Refrigeration; Numerical. Gas	
	Cycle Refrigeration and Aircraft Refrigeration & Air conditioning:	
	Bell Coleman/Reversed Brayton/ Reversed Joule Cycle and its analysis;	
	Numerical; optimum COP and pressure ratio (No mathematical	
	Analysis); Applications of Gas Cycle Refrigeration; Necessity of aircraft	
	refrigeration and air conditioning; Classification of aircraft refrigeration	
	and air conditioning systems; Simple/basic aircraft refrigeration and air	
	conditioning system (with and without evaporative cooler); Need of	
	evaporator cooler; Boot Strap aircraft refrigeration and air conditioning	
	system (with and without evaporative cooler); Regenerative aircraft	
	refrigeration and air conditioning system; Reduced Ambient aircraft	
	refrigeration and air conditioning system; Dry Air Rated Temperature	
	(DART); Comparison of different aircraft refrigeration and air	
	conditioning systems; Numerical.	
2	Vapour Compression Refrigeration Cycle:	10 Hrs
	Vapour compression refrigeration system and its basic components;	
	Representation of Simple/ Theoretical vapour compression refrigeration	
	cycle on P-v, T-s and P-h diagrams; Dry versus wet compression;	
	expansion versus throttling of liquid refrigerant; Analysis of	
	Simple/Theoretical vapour compression refrigeration cycle; Introduction	
	of P-h diagram/chart and Refrigeration Tables; Determination of	
	properties of sub cooled, saturated and superheated refrigerant by using	

	saturated properties & specific heat tables/saturated & superheated properties tables and P-h diagram; Compressor work and volumetric efficiency; Effect on performance and cooling capacity due to change in evaporator pressure, condenser pressure, sub cooling of liquid refrigerant, super heating of suction vapours, use of liquid - vapour regenerative heat exchanger; Effect on performance and cooling capacity due to heat exchange of vapours with compressor cylinder walls, pressure drop in suction (wire drawing) and discharge valves, pressure drop in evaporator and condenser; Actual vapour compression refrigeration cycle on T-s and P-h diagrams (No mathematical analysis); Numericals. Flash gas, its advantages and disadvantages, and its removal: flash chamber, liquid sub-cooler; Brief introduction (no mathematical analysis) to compound (multistage) compression, its advantages, schematic representation of these systems with use of flash chamber, water intercooler, flash intercooler, liquid sub-cooler (independent and combination of these); Brief introduction (no mathematical analysis) to multiple evaporator systems, schematic representation of these systems with use of flash chamber, water systems with use of flash chamber, use of these systems with use of flash chamber, water intercooler, flash intercooler, liquid sub-cooler (independent and combination of these); Brief introduction (no mathematical analysis) to multiple evaporator systems, schematic representation of these systems with use of flash chamber, water analysis) to multiple evaporator systems, schematic representation of these systems, schematic representation of these systems with use of flash chamber, water analysis) to multiple evaporator systems, schematic representation of these systems with use of flash chamber, water analysis) to multiple evaporator systems, schematic representation of these systems with use of flash chamber, water analysis) to multiple evaporator systems and multiple expansion valves arrangements, with single and multiple (indiv	
3	 Vapour Absorption Refrigeration Cycle (No Mathematical Analysis): Principle of vapour absorption refrigeration; basic components of the vapour absorption refrigeration system; Desirable properties of absorption system refrigerant and absorbent; Aqua - ammonia vapour absorption refrigeration system; Lithium Bromide - water absorption system (Single and double effect);Electrolux refrigeration system; comparison between vapour absorption and compression systems. Refrigerants: Classification and nomenclature of refrigerants; Desirable thermodynamic, chemical and physical properties of refrigerants; comparative study of commonly used refrigerants and their fields of application; Azeotropes; Zeotropes; Effect of moisture and oil miscibility; Refrigerants dying agents and antifreeze solution; leak detection and charging of refrigerants; environmental aspects of conventional refrigerants; Definition, Cryogenic fluids, storage and insulation; Linde-Hampson and Cloude Liquification Cycles (NO ANALYSIS); Adiabatic Demagnetization; Applications. Alternative Refrigeration Systems and Low Temperature Refrigeration; Mixed Refrigeration Systems; Vortex Tube Refrigeration; Cascade Refrigeration System; Linde and Claude cycles, cryogenics and its engineering applications. 	12 Hrs
4	Air Conditioning Concepts and Applications:	23 Hrs

Psychrometry; Dry Air; Moist Air; Basic laws obeyed by Dry Air and	
Moist Air; Psychrometric properties of air: Dry bulb, wet bulb and dew	
point temperatures, Relative and specific humidity, degree of saturation	
adiabatic saturation temperature, enthalpy of air and water vapours;	
Psychrometric chart and its use; Adiabatic mixing of moist air streams	
without condensation and with condensation; Numerical.	
Human requirement of comforts; effective temperature and comfort	
charts; Industrial and comfort air conditioning	
Psychometric Processes:	
Basic psychrometric processes; Sensible heat process; Latent heat	
process; Total heat process; Sensible heat factor; Evaporative cooling;	
cooling with dehumidification; Heating with dehumidification; chemical	
dehumidification; By-pass factor; Contact factor; Psychrometric	
processes in air conditioning equipment: Cooling coils, Heating coils,	
cooling and dehumidification coils, Evaporative coolers, Adiabatic	
dehumidifiers, Steam injection, Air washer; Numerical.	
Calculations for Air conditioning Load and for Rate and state of	
Supply Air:	
Sources of heat load; sensible and latent heat load; Cooling and heating	
load estimation; Apparatus dew point temperature; Rate and state of	
supply air for air conditioning of different types of premises; Numerical	
Refrigeration and Air Conditioning Equipment:	
Brief description of compressors, condensers, evaporators and expansion	
devices; Cooling towers; Ducts; dampers; grills; air filters; fans; room air	
conditioners; split units; Package and central air conditioning plants.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-4703.1	Understand the basic concepts and principles of refrigeration and air conditioning systems
CO2	BMEC-4703.2	Discuss different types of aircraft refrigeration system and their performances under different conditions
CO3	BMEC-4703.3	To gain knowledge of refrigerants and factors influencing air conditioning
C04	BMEC-4703.4	Study the importance of psychometric chart and along with processes and also determine the calculations related to air conditioning load

Text Books:

1. C.P. Arora, Refrigeration and Conditioning, Tata McGraw Hill. 2001

2. Manohar Prasad, Refrigeration and Conditioning, Wiley Eastern Limited. 1998

Reference Books:

1. Jordan and Priester, Refrigeration and Conditioning, Prentice Hall of India. 200

2. W.F. Stoecker, Refrigeration and Conditioning, McGraw Hill.2010

- 1. International Journal of Refrigeration (<u>https://www.sciencedirect.com/journal/international-journal-of-refrigeration</u>)
- 2. International Journal of Energy Research (https://onlinelibrary.wiley.com/journal/1099114

SUBJECT TITLE: MECHANICAL VIBRATIONS SUBJECT CODE: BMEC-4704 SEMESTER: 7th CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objective/s & Outcome/s: The students will understand the basic concepts and principles of Vibrations, concept of damping and vibration measuring instruments systems. Students should be able to understand different types of absorber and their performances under different conditions. They will also gain knowledge of various vibration equations and their factors influencing conditionality of situations.

S.No.	Contents		
		Hrs	
1	Introduction:	6 Hrs	
	Basic concepts, Types of vibration, Periodic & Harmonic vibrations,		
	Methods of vibration analysis		
2	Vibration of Single Degree of Freedom System:	10 Hrs	
	Undamped free vibrations, damped free vibrations and damped force		
	vibration system, Modelling of stiffness and damping (both viscous and		
	coulomb), estimation of damping by decay plots, vibration isolation		
	transmissibility, vibration measuring instruments.		
3	Two degrees of Freedom systems:	14 Hrs	
	a) Principal modes of vibrations, natural frequencies, amplitude ratio,		
	undamped free, damped free, forced harmonic vibration, semi-definite		
	systems, combined rectilinear & angular modes; Lagrange's equation.		
	b) Application to un-damped and damped absorbers: Vibration absorber –		
	principle; centrifugal pendulum vibration absorber, torsional vibration		
	damper, untuned dry friction and viscous vibration damper, torsional		
	vibration abosrber.		
4	Multi-degree of freedom systems:	26 Hrs	
	Undamped free vibrations, influence coefficients, Generalised coordinates,		
	orthogonality principal, matrix iteration method, Rayleigh and Dunkerley,		
	Holzer's, Stodola method, Eigen values and eigen vectors.		
	Continuous systems:		
	Lateral vibrations of a string, longitudinal vibrations of bars, transverse		
	vibrations of beams, Euler's equation of motion for beam vibration,		
	natural frequencies for various end conditions, torsional vibration of		
	circular shafts.		

CO1	BMEC-4704.1	Understand the basic concepts and principles of Vibrations, concept of
-----	-------------	--

		damping and vibration measuring instruments systems
CO2	BMEC-4704.2	To understand different types of absorber and their performances under
		different conditions
CO3	BMEC-4704.3	To gain knowledge of various vibration equations and their factors
		influencing conditionality of situations
C04	BMEC-4704.4	Analyze the multi degree freedom and continuous systems for the vibrating
		motion

Text Books:

1. G.K. Grover, Mechanical Vibrations Hem Chand and Bros. 2006

- 2. K.K. Purjara, Mechanical Vibrations, DhanpatRai and Sons, Delhi. 2008
- 3. V.P.Singh, Mechanical Vibrations DhanpatRai and Sons, Delhi. 2002

Reference Books:

- 1. Debabrata Nag, Mechanical Vibration, John Wiley India.2012
- 2. Thomson, Mechanical Vibration, Prentice Hall. 2014

- 1.Journal of the Brazilian Society of Mechanical Sciences and Engineering (https://www.springer.com/journal/40430)
- 2.Journal of Sound and Vibration (https://www.sciencedirect.com/journal/journal-of-sound-and-vibration)

SUBJECT TITLE: CONSTITUTION OF INDIA SUBJECT CODE: BLLAW-1111 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
2	0	0	0

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Constitutional Development, Preamble, Fundamental Rights: Right to	10 Hrs
	Equality, Right to Freedom, Right to Life	
2	Writs, Fundamental Duties, Directive Principles	5 Hrs
3	Union and State Executive, Union and State Legislature, Union and State	10 Hrs
	Judiciary	
4	4.4 Emergency	10 Hrs
	4.5 Relation between Centre & State	
	4.6 Basic Structure	
	*Students are expected to study current and landmark case laws.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BLLAW-1111.1	Identify and explore the basic features and modalities about Indian	
		constitution.	
CO2	BLLAW-1111.2	Differentiate and relate the functioning of Indian parliamentary system at	
		the center and	
CO3	BLLAW-1111.3	state level.	
C04	BLLAW-1111.4	Differentiate and relate the functioning of	
C05	BLLAW-1111.5	Indian parliamentary system at the center and state level.	

Text Books:

- 1. Constituent Assembly Debates
- 2. M.P. Jain: Indian Constitutional Law, 2018
- 3. Mahendra P. Singh: V.N. Shukla's Constitution of India, 2016
- 4. J.N. Pandey: Constitutional Law of India, 2015

Reference Books:

- 1. H.M. Seervai: Constitutional Law of India, 2015
- 2. D.D. Basu: Introduction of the Constitution of India, 2014
- 3. KailashRai: The Constitutional Law of India, 2010
- 4. T.K. Tope's: Constitutional Law of India, 2010
- 5. The Constitution of India, 1950

DEPARTMENTAL ELECTIVE-II (7th SEM)

SUBJECT TITLE: AUTOMOTIVE CONTROL SUBJECT CODE: BMEC-4705 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact Hrs
1	Introduction of Common Technology: Engine related systems.	8 Hrs
	Ignition system, computer controlled petrol fueling injection systems,	
	Engine management systems, Anti-lock braking systems, Traction	
	control system, Stability Control system, air conditioning, computer	
	controlled diesel engine system.	
2	Computer ECM: Fundamental parts of computer, Principles of	7 Hrs
	operation, Computer data, Computer interfaces, Computer memories,	
	Adaptive operating strategy of the ECM.	
3	Digital Electronics: Logic gates, truth tables, Application of Logic	8 Hrs
	gates, Flip-Flop, Analogue to Digital Conversion, Digital to	
	Analogue conversion, Digital Displays (LED Display and Liquid	
	crystal displays).	
4	Sensors: Introduction of sensors and transducers Electromagnetic	8 Hrs
	Sensors, Optical sensors, variable resistance type sensors, temperature	
	sensors, Pressure sensors, variable capacitance sensors, Flow sensors,	
	Piezoelectric sensors, Oxygen Sensor, Practical Importance of sensors.	
5	Actuators: Introduction of Actuators, Actuators operation,	4 Hrs
	Injectors, Exhaust gas recirculation actuators, motors,	
	Solenoids, ABS actuators.	
6	Additional Technology: Computer performance, Supplementary	5 Hrs
	restraint systems (SRS),Coded ignition key, Fault tracing,	
	Precautions when working with computer controlled system.	

CO1	BMEC-4705.1	To understand the principles and working of different systems of automobiles
CO2	BMEC-4705.2	To understand the principles and design of different systems of automobiles
CO3	BMEC-4705.3	To understand the principles and working of Microprocessor based automobiles.
C04	BMEC-4705.4	To understand the principles and working of sensors and actuators.

Text Books:

- 1. Allan W.M. Bonnick, 'Automotive Computer Controlled Systems', Butterworth-Heinemann: A Division of Reed Educational and Professional Publishing Ltd.
- 2. Willium B. Ribbens, Willium B. Ribbens, 'Understanding Automotive Electronics', Elsevier Science, **2003.**

Reference Books:

- 1. Ronald K. Jurgen, 'Sensors and Transducers', SAE, 2003.
- 2. Jack Erjavec, 'Automotive Technology' Robert Scharff Delmar Publications Inc., 1992.

- 1. IEEE Control Systems Magazine (Link: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=37)
- 2. IFAC Proceedings Volumes (Link: https://www.sciencedirect.com/journal/ifac-proceedings-volumes)

DEPARTMENTAL ELECTIVE-II (7th SEM)

SUBJECT TITLE: NON TRADITIONAL MACHINING PROCESSES SUBJECT CODE: BMEC-4706 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact Hrs
1	Introduction:	5 Hrs
	Latest trends in Manufacturing, Introduction to Flexible manufacturing	
	system, Introduction to computer integrated manufacturing, Limitations	
	of conventional machining processes, Development of Non-conventional	
	machining processes, their classification, advantages and major	
	applications.	
2	Advanced Mechanical Processes:	10 Hrs
	Ultrasonic machining, Water Jet Machining and Abrasive Flow	
	Machining-elements of process, Applications and limitations	
3	Electrochemical & Chemical Removal Processes:	10 Hrs
	Principle of operation, elements and applications of Electrochemical	
	Machining, Electrochemical grinding, Electrochemical deburring,	
	Electrochemical honing, Chemical Machining, Photochemical machining.	
4	Thermal Metal Removal Processes:	15 Hrs
	Electric Discharge Machining- Mechanism of metal removal, electrode	
	feed control, die electric fluids flushing, selection of electrode material,	
	applications. Plasma Arc Machining- Mechanism of metal removal, PAM	
	parameters, Equipment's for unit, safety precautions and applications.	
	Laser Beam machining- Material removal, limitations and advantages.	
	Hot machining- method of heat, Applications and limitations. Electon-	
	Beam Machining-, Generation and control of electron beam, process	
	capabilities and limitations.	
	Hybrid Machining Processes:	
	Concept, classification, application, Advantages	

CO1	BMEC-4706.1	Students will be able to categorize different material removal, joining processes as per the requirements of material being used to manufacture end product.
CO2	BMEC-4706.2	Students will be able to select material processing technique with the aim of
		cost reduction, reducing material wastage & machining time.
CO3	BMEC-4706.3	Students will be able to combine & develop novel hybrid techniques from
		the state of art techniques available.

C04	BMEC-4706.4	Students will be able to perform process analysis taking into account the
		various responses considered in a process.

Text Books:

- 1. P.C. Panday and H.S. Shan, Modern Machining Processes, Tata McGraw Hill. 1998
- 2. G. Boothroyd and W.A. Knight, Fundamentals of Machining and Machine Tools, Marcel Dekker Inc.2006
- 3. G.F. Benedict, Non-traditional Manufacturing Processes, Marcel Dekker Inc.2006

Reference Books:

- 1. V.K Jain, Advanced Machining Processes, Allied Publishers.2000
- 2. Hassan Abdel, Gawad El-hofy Fundamentals of Machining Processes: Conventional and Nonconventional Processes, Taylor & Francis. 2008

- 1. Materials Today Proceeding (https://www.sciencedirect.com/journal/materials-today-proceedings)
- 2. The International Journal of Advanced Manufacturing Technology (https://www.springer.com/journal/170)

FOR 2022 BATCH ONWARDS (B.TECH MECHANICAL ENGG.) DEPARTMENTAL ELECTIVE-II (7th SEM)

SUBJECT TITLE: INDUSTRIAL TRIBOLOGY SUBJECT CODE: BMEC-4707 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction:	5 Hrs
	Tribological considerations, Nature of surfaces and their contact, Physical,	
	mechanical properties of surface layer, Geometrical properties of surfaces,	
	methods of studying surfaces, Study of contract of smoothly and rough	
	surfaces	
2	Friction and Wear:	10 Hrs
	Role of friction and laws of static friction, causes of friction, adhesion	
	theory, Laws of rolling friction, Friction of metals and non-metals; Friction	
	measurements. Definition of wear, mechanism of wear, friction affecting	
	wear, wear measurement, Wear of metals and non-metals.	
3	Lubrication and Lubricants:	10 Hrs
	Introduction, dry friction, Boundary lubrication, classic hydrodynamics,	
	hydrostatic and elasto hydrodynamic lubrication, Functions of lubricants,	
	Types of lubricants and their industrial uses, properties of liquid and grease	
	lubricants; lubricant additives, general properties and selection.	
4	Special Topics:	15 Hrs
	Selection of bearing and lubricant, bearing maintenance, diagnostic	
	maintenance of tribological components, lubrication systems, Filters and	
	filtration.	

CO1	BMEC-4707.1	The basic objective of the subject is to deal fundamentals of friction, wear and lubrication
CO2	BMEC-4707.2	The subject is useful in understanding the nature of surfaces of engineering materials.
CO3	BMEC-4707.3	The basic objective of the subject is to learn about types of lubricants.

C04 BMEC-4707.4 The subject is useful in understanding the various tribological applications.

Text Books:

- 1. O'Conner and Royle, Standard Hand Book of Lubrication Engg., McGraw Hill.2004
- 2. Halling and Wykeham, Introduction to Tribology, Publications Ltd.2008
- 3. RaymonoO.Gunther, Lubrication, Bailey Bros and Swinfan Ltd.2010

Reference Books:

- 1. PT Barwll, Rearing Systems, Principles and Practice, Oxford press.2006
- 2. A Cameron, Basic Lubrication Theory, Wiley (Indian Edition).2008

- 1. Wear (https://www.sciencedirect.com/journal/wear)
- 2. Tribology International (https://www.sciencedirect.com/journal/tribology-international)

FOR 2022 BATCH ONWARDS (B.TECH MECHANICAL ENGG.) DEPARTMENTAL ELECTIVE-II (7th SEM)

SUBJECT TITLE: FINITE ELEMENT METHODS SUBJECT CODE: BMEC-4708 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction:	5 Hrs
	Finite Element Method for solving field problems. Stress and Equilibrium.	
	Strain -Displacement relations. Stress - strain relations.	
2	One Dimensional Problems: Finite element modeling coordinates and	10 Hrs
	shape functions.Potential Energy approach: Assembly of Global stiffness	
	matrix and load vector. Finite element equations, Treatment of boundary	
	conditions, Quadratic shape functions.	
3	Analysis of Beams: Element stiffness matrix for two node, two	10 Hrs
	degrees of freedom per nodebeam element.	
	Finite element modelling of two dimensional stress analysis with	
	constant strain triangles and treatment of boundary conditions. Finite	
	element modelling of Axisymmetric solids subjected to Axisymmetric	
	loading with triangular elements.	
4	Two dimensional four noded isoparametric elements and numerical	15 Hrs
	integration. Steady state heat transfer analysis: one dimensional analysis of	
	a fin and two dimensional analysis of thin plate. Analysis of a uniform shaft	
	subjected to torsion. Dynamic Analysis: Formulation of finite element	
	model, element matrices, evaluation of Eigen values and Eigen vectors for a	
	stepped bar and a beam.	

CO1	BMEC-4708.1	The basic concepts of Finite Element methods and its applications to complex engineering
CO2	BMEC-4708.2	The characteristics and selection of different finite elements used in finite
CO3	BMEC-4708.3	The equilibrium equations and stress-strain relations for different boundary conditions encountered in structural and heat transfer continuum problems

C04 BMEC-4708.4 The application of the FEM technique to dynamic problems and validate the solutions through simulation software for real time applications

Text Books:

- 1. Chandraputla Ashok and Belegundu, 'Introduction to Finite Elements in Engineering', Prentice -Hall.
- 2. S.S. Rao, 'The Finite Element Methods in Engineering', Pergamon.
- 3. J.N. Reddy, 'An Introduction to Finite Element Method', McGraw Hill.

Reference Books:

- 1. Alavala, 'Finite Element Methods', TMH.
- 2. Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith and Ted G. Byrom, 'The Finite Element Method for Engineers', John Wiley & Sons. (ASIA) Pte Ltd.
- 3. C.S. Krishna Murthy, 'Finite Element Analysis'.

- 1. Wear (https://www.sciencedirect.com/journal/wear)
- 2. Journal of Engineering, Design and Technology (https://www.emerald.com/insight/publication/issn/1726-0531)

DEPARTMENTAL ELECTIVE-II (7th SEM)

SUBJECT TITLE: STATISTICAL QUALITY CONTROL SUBJECT CODE: BMEC-4709 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	Contact
		Hrs
1	Introduction: Definition and Need of quality, Aspects of quality, Quality	10 Hrs
	characteristic, Quality specification, Quality function, Economics of quality.	
	Inspection, Its objectives and types, Inspection versus Quality Control,	
	Statistical Quality Control, its Tools, Advantages, limitations and	
	Applications.	
	Probability & Statistics: Definition, Laws, Probability Distributions	
	(Normal Binomial, Poisson, Exponential) & related problems. Measures of	
	Central tendency & Dispersion, Concept of Variation, Variable and attribute	
	data, Frequency distribution.	
2	Control Charts: Concept of variability, Assignable and chance causes,	10 Hrs
	Concept of specifications and tolerances, Definition and objectives of	
	control charts, Control charts for variables and attributes and related	
	problems, Variable charts vs attribute charts, Patterns on control charts,	
	Type-I & Type-II Errors, Process capability and its methods of	
_	determination.	
3	Acceptance Sampling: Definition, Advantages over 100% inspection,	10 Hrs
	Methods of taking samples, Operating characteristics curve & its	
	characteristics. Single, Double and Multiple, Sequential Sampling Plan &	
	Related problems.	
	Quality Assurance: Need, Principles, Essentials and Advantages of Quality	
	Assurance System, Quality Manual, Field complaints, Quality Audit & its	
	types, Quality Assurance Methods, Quality Control vs. Quality Assurance.	
4	Quality Systems: Description of ISO: 9000 series of standards, ISO: 9001-	10 Hrs
	2000 Systems. Description of TQM, Concept of Quality Circles, JIT	
	System, Taguchi's Concept of Quality, Zero Defect Concept, 6s Concept	
	and 5S.	

CO1	BMEC-4709.1	Understand the philosophy and basic concepts of quality improvement
CO2	BMEC-4709.2	Demonstrate the ability to use the methods of statistical process control
CO3	BMEC-4709.3	Demonstrate the ability to design, use, and interpret control charts for attribute
C04	BMEC-4709.4	Design, use, and interpret exponentially weighted moving average and moving average control charts.

Text Books:

- 1. M. Mahajan, 'Statistical Quality Control', DhanpatRai& Co.
- 2. AmitavMitra, 'Fundamentals of Quality Control', Pearson Education.
- 3. E.L. Grant & R.S. Leavenworth, 'Statistical Quality Control', McGraw Hill & Co.
- 4. Feigenbaum, 'Total Quality Control', McGraw Hill & Co.

Reference Books:

- 1. D.C. Montgomery DC, 'Introduction to Statistical Quality Control', John Wiley & Sons Inc.
- 2. Stephan B. Vardeman, J. Marcus Jobe, 'Statistical QA Methods for Engineers', John Wiley & Sons Inc.
- 3. J.R. Taylor, 'Quality Control systems', McGraw Hill Int. Education.

- 1. Computers & Industrial Engineering (https://www.sciencedirect.com/journal/computers-and-industrial-engineering)
- 2. Journal of Manufacturing Technology Management (https://www.emeraldgrouppublishing.com/journal/jmtm)

DEPARTMENTAL ELECTIVE-II (7th SEM)

SUBJECT TITLE: ADDITIVE MANUFACTURING SUBJECT CODE: BMEC-4710 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

S.No.	Contents	
		Hrs
1	Introduction to Rapid Prototyping: Classification of Manufacturing	10 Hrs
	Processes, Introduction to Rapid Prototyping and Additive Manufacturing,	
	History of development of RP, Engineering design process, Rapid	
	Prototyping and its Impact, Product development, Product Prototyping and	
	Product Development	
	Product Prototyping: Need of Product Prototyping, Prototype Planning	
	and Management, Product and Prototype Cost Estimation, Prototype Design	
	Methods and tools	
2	CAD Modeling: Geometrical Modelling Techniques, Wireframe	5 Hrs
	Modelling, Surface Modelling and solid modeling, Slicing methods and	
	software	
3	Rapid Prototyping Processes: Rapid Prototyping Overview, Rapid	10 Hrs
	Prototyping Procedure, Liquid-Based RP Processes, Solid-Based RP	
	Processes, Powder-Based RP Processes, Prototyping Materials, Modeling of	
	Material Properties, Modeling and Design of Materials and Structures.	
	Direct Digital Prototyping and Manufacturing: Solid Models and	
	Prototype Representation, Reverse Engineering for Digital	
	Representation, Prototyping and Manufacturing Using CNC Machining,	
	Fully Automated Digital Prototyping and Manufacturing.	
4	Direct Methods for Rapid Tool Production: Classification of Direct	15 Hrs
	Rapid Tool Methods, Direct ACESTM Injection Moulds, Laminated Object	
	Manufactured (LaM) Tools, DTM Rapid Tool, Sand Form, EOS Direct	
	Tool Process, Direct Metal Tooling using 3Dp.	
	Applications of Rapid Prototyping: Functional Models, Rapid Tooling,	
	Rapid Manufacturing, Engineering Applications, Medical Model, and Art	
	Models, Engineering Analysis Models. Indirect Methods for Rapid Tool	
	Production: Metal Deposition Tools, RTV Tools, Epoxy Tools, Ceramic	
	Tools, Cast Metal Tools, Investment Casting, Fusible Metallic Core, Sand	

Casting, Kel tool Process.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BMEC-4710.1	To introduce students the basics of additive manufacturing/rapid prototyping and its applications in various fields, reverse engineering techniques
CO2	BMEC-4710.2	Demonstrate the knowledge of Additive Manufacturing and Rapid Prototyping technologies
CO3	BMEC-4710.3	Describe different RP techniques
C04	BMEC-4710.4	Discuss fundamentals of Reverse Engineering

Text Book:

1. Frank W. Liou, 'Rapid Prototyping and engineering Applications', CRC Press, 2007.

Reference Books:

- 1. D.T. Pham and S.S. Dimov, 'Rapid Manufacturing', Springer.
- 2. Kevin Otto, Kristin Wood, 'Product Design', Pearson.

- 1. The International Journal of Advanced Manufacturing Technology (https://www.springer.com/journal/170)
- 2. Journal of Materials Processing Technology (https://www.sciencedirect.com/journal/journalof-materials-processing-technology)

FOR 2022 BATCH ONWARDS (B.TECH MECHANICAL ENGG.) SUBJECT TITLE: REFRIGERATION AND AIRCONDITIONING LAB SUBJECT CODE: BMEC-4771 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact Hrs
1	Study of various elements of a vapour compression refrigeration system	2 Hrs
	through cut sections models / actual apparatus.	
2	Study and performance testing of domestic refrigerator.	2 Hrs
3	Study the performance testing of Electrolux refrigerator.	2 Hrs
4	Study and performance testing of an Ice plant.	2 Hrs
5	Calculation/ Estimation of cooling load for a large building.	2 Hrs
6	Visit to a central Air conditioning plant for study of processes for winter	2 Hrs
	and summer air conditioning	
7	Visit to a cold storage for study of its working.	2 Hrs
8	Study and performance testing of window type room air conditioner.	2 Hrs
9	Study and performance testing of water cooler.	2 Hrs

CO1	BMEC-4771.1	Demonstrate the different parts of domestic refrigerator and brief its importance
CO2	BMEC-4771.2	Analyze the performance of various vapour compression cycles
CO3	BMEC-47713	Discuss the various components of air conditioner setup and analyze its performance index
C04	BMEC-4771.4	Visit of central air conditioned plant and cold storage plant for its practicality

FOR 2022 BATCH ONWARDS (B.TECH MECHANICAL ENGG.) SUBJECT TITLE: MECHANCIAL VIBRATION LAB SUBJECT CODE: BMEC-4772 SEMESTER: 7 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 50 External Assessment: 50

S.No.	Contents	Contact HRS
1	Determine the viscosity of given fluid by single wire torsional pendulum.	2 Hrs
2	Determine the natural frequencies of a coupled pendulum.	2 Hrs
3	Find out the fundamental natural frequency of a cantilever beam	2 Hrs
4	Determine the modulas of elasticity from free vibration test	2 Hrs
5	Study of forced vibration of a two degree of freedom system under	2 Hrs
	harmonic excitation	
6	Study of a dynamic absorber	2 Hrs
7	Determine coefficient of dry friction from measurement of natural	2 Hrs
	frequency of vibration of a bar resting on two disks rotating in opposite	
	direction	

CO1	BMEC-4772.1	Understand the importance of vibration in mechanical components
CO2	BMEC-4772.2	To determine the natural frequency of coupled pendulum and cantilever beam
CO3	BMEC-47723	Analyze the forced vibration of two degree of freedom under SHM
C04	BMEC-4772.4	Evaluate the co-efficient of friction of the mechanical systems along with its calculations

FOR 2022 BATCH ONWARDS (B.TECH MECHANICAL ENGG.) SUBJECT TITLE: MAJOR PROJECT SUBJECT CODE: BMEC-4773 SEMESTER: 7 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Prac

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 100

In this student has to build a project and has to make a file for the same.

CO1	BMEC-4773.1	Design and development of your project work as per the objectives
CO2	BMEC-4773.2	To implement the actual working of your project as per the industrial relevancy
CO3	BMEC-4773.3	Discuss the relevant conclusion and scope of future work of you project
C04	BMEC-4773.4	Prepare for your project work file and seminar ppt. report

SYLLABUS

SEMESTER-VIII

FOR 2022 BATCH ONWARDS (B.TECH MECHANICAL ENGG.) SUBJECT TITLE: INDUSTRIAL TRAINING SUBJECT CODE: BMEC-4801 SEMESTER: 8 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Prac

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	0	10

Internal Assessment: 200 End Term Exam: 300

In this the student has to do the industrial training and has to make a file for the same.

CO1	BMEC-4801.1	To participate in ongoing and upcoming projects of the industry
CO2	BMEC-4801.2	Determine the use of advanced techniques and machining tools
CO3	BMEC-4801.3	Interact with industry personnel and follow the Engineering practices
C04	BMEC-4801.4	Develop awareness about general workshop behavior and built a team skills