

SCHEME & SYLLABUS

(Choice Based Credit System)

for

B. TECH.

in

MECHANICAL ENGINEERING

(w.e.f. Session 2017-18)

Program Code: ME-301

DEPARTMENT OF MECHANICAL ENGINEERING SCHOOL OF ENGINEERING RIMT UNIVERSITY, MANDI GOBINDGARH, PUNJAB

Program Code: ME-301

TABLE OF CONTENTS

S. No.	Content	Page No.
1.	Section 1: Vision and Mission of the University	1
2.	Section 2: Vision and Mission of the Department	2
3.	Section 3: About the Program	3
4.	Section 4: Program Educational Objectives (PEOs), Program Outcomes (POs) and Program Specific Outcomes (PSOs)	4
5.	Section 5: Curriculum / Scheme with Examination Scheme	8
6.	Section 6: Detailed Syllabus with Course Outcomes	22

Program Code: ME-301

SECTION 1

Vision & Mission of the University

VISION

To become one of the most preferred learning places a centre of excellence to promote and nurture future leaders who would facilitate in desired change in the society

MISSION

- M1: To impart teaching and learning through cutting edge technologies supported by the world class infrastructure
- M2: To empower and transform young minds into capable leaders and responsible citizens of India instilled with high ethical and moral values

Program Code: ME-301

SECTION 2

Vision and Mission of the Department

VISION

To contribute to the society through excellence in scientific and technical education and research. To contribute the country by providing globally competent Mechanical Engineers capable of working in an inter-disciplinary environment which foster spirits of innovation, entrepreneurship and leadership. To support industry for growth, being the valuable resource for them, and remain a role model for others in the field of Mechanical Engineering.

MISSION

M1: To provide a high-quality educational experience for undergraduate and graduate students that enables them to become leaders in their chosen professions and to make them globally competitive mechanical engineers.

M2: To create, explore, and develop innovations in engineering and science through undergraduate and graduate research. To develop linkages with world class R&D organizations and educational institutions in India and abroad for excellence in teaching, research and consultancy practices.

SECTION 3

About the Program

Mechanical Engineering Department was established in 2003 with the inception of the institute to produce high quality engineers in the field of Mechanical Engineering. The programme involves application of principles of physics for analysis, design, manufacturing, and maintenance of mechanical systems. It requires a solid understanding of key concepts including Mechanics, Kinematics, Thermodynamics and Energy. Mechanical engineers use these principles and others in the design and analysis of automobiles, aircraft, heating and cooling systems, manufacturing plants, industrial equipment and machinery, medical devices and more.

SECTION 4

Program Educational Objectives (PEOs), Program Outcomes (POs) and Program Specific Outcomes (PSOs)

PROGRAMME EDUCATION OBJECTIVES (PEOs)

PEO1	To prepare learners with a solid foundation in mathematics, sciences, and technical
	skills needed to analyze and design in engineering problems.
PEO2	To be able to explore areas of research, application & innovation and make impact in
	different types of institutional settings such as corporate entities, government bodies,
	NGOs, inter-government organizations, & start-ups.
PEO3	To prepare learners to apply knowledge, strong reasoning, and quantitative skills to
	design and implement creative and sustainable solutions.
PEO4	To prepare learners to effectively use modern equipment's & programming tools to
	solve real life problems that are technically sound, economically feasible and socially
	acceptable.
PEO5	To prepare learners for successful professional career, to excel in higher studies and or
	to become entrepreneur.
PEO6	To be able to continuously learn and update one's knowledge, engage in lifelong
	learning habits and acquire latest knowledge to perform in current work settings.
PEO7	To prepare learners to become responsible citizens by serving the community locally,
	nationally, and internationally.

PROGRAMME OUTCOMES (POs)

PO 1	Apply the knowledge of mathematics, science, engineering fundamentals, and
	mechanical engineering to the solution of complex engineering problems.
PO 2	Identify, formulate, research literature, and analyze complex engineering problems
	reaching substantiated conclusions using first principles of mathematics, natural
	sciences, and engineering sciences
PO 3	Design solutions for complex mechanical engineering problems and design system
	components or processes that meet the specified needs with appropriate consideration
	for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Use research-based knowledge and research methods including design of experiments,
	analysis and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering
	and IT tools including prediction and modeling to complex mechanical engineering
	activities with an understanding of the limitations.
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health,
	safety, legal and cultural issues and the consequent responsibilities relevant to
	professional engineering practice.
PO 7	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge of, and need for sustainable
	development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and
	in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering
	community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.

PO 11	Demonstrate knowledge and understanding of the engineering and management
	principles and apply these to one's own work, as a member and leader in a team, to
	manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1	Apply mechanical engineering and interdisciplinary knowledge for analyzing,
	designing and manufacturing products to address the needs of the society.
PSO 2	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.

Program Code: ME-301

SECTION 5

Curriculum / Scheme with Examination Grading Scheme

SEMESTER WISE SUMMARY OF THE PROGRAMME: B.TECH. (MECHANICAL ENGINEERING)

S. No.	Semester	No. of Contact Hours	Marks	Credits
1.	I	31	900	25
2.	II	22	800	23
3	III	29	900	26
4	IV	22	800	22
5	V	27	1200	27
6	VI	22	900	22
7	VII	22	800	22
8	VIII	16	800	16
	Total	191	6200	183

Program Code: ME-301

EXAMINATION GRADING SCHEME

Marks Percentage Range	Grade	Grade Point	Qualitative Meaning
80-100	О	10	Outstanding
70-79	A^+	9	Excellent
60-69	A	8	Very Good
55-59	B^+	7	Good
50-54	В	6	Above Average
45-49	С	5	Average
40-44	P	4	Fail
0-39	F	0	Fail
ABSENT	AB	0	Fail

Percentage Calculation: CGPA *10

Program Code: ME-301

FIRST SEMESTER

Course			Cont urs/V	tact Veek		Contact	Evalu (% of	Exam Duration		
Course Code	Course Title	L	Т	P	Credit	Hrs.	Internal	External	Total	(Hours)
BTPH 1101	Applied Physics	3	1	0	4	4	40	60	100	3 Hrs
BTMA 1101	Applied Mathematics-I	4	1	0	5	5	40	60	100	3 Hrs
BTHU 1101	Communicative English	3	0	0	3	3	40	60	100	3 Hrs
BEEE 1101	Basics of Electrical & Electronics Engg.	4	0	0	4	4	40	60	100	3 Hrs
BTES 1101	Environmental Science	2	0	0	2	2	40	60	100	3 Hrs
BTPH 1102	Applied Physics Lab	0	0	2	1	2	60	40	100	3 Hrs
BTHU 1102	Communicative English Lab	0	0	2	1	2	60	40	100	3Hrs
BEEE 1102	Basics of Electrical & Electronics Engg. Lab	0	0	2	1	2	60	40	100	3Hrs
BTMP 1101	Manufacturing Practice	1	0	6	4	7	40	60	100	3 Hrs
Total			2	12	25	31			900	

Program Code: ME-301

SECOND SEMESTER

Subject		Contact Hours/Wee k		Credi Contac tHrs.		1 Scheme (/ v vi			Exam Duration (Hours)	
Code	Title	L	T	P			Interna l	Extern al	Total	
BTCH-1101	Applied Chemistry	3	1	0	4	4	40	60	100	3 Hrs
BTMA-1201	Applied Mathematics-II	4	1	0	5	5	40	60	100	3 Hrs
BTCS-1101	Basics of Computer Prog.	3	0	0	3	3	40	60	100	3 Hrs
	Elements of Mechanical Engg.	3	1	0	4	4	40	60	100	3 Hrs
BTME-1102	Engineering Drawing	1	0	6	4	7	40	60	100	3 Hrs
BTCH-1102	Applied Chemistry Lab	0	0	2	1	2	60	40	100	3 Hrs
BTCS-1102	Basics of Computer Prog. Lab	0	0	2	1	2	60	40	100	3 Hrs
BTPD-1101	Professional Communication in Practice	0	0	2	1	2	60	40	100	3 Hrs
	Total	14	3	12	23	29			800	24 Hrs

Program Code: ME-301

THIRD SEMESTER

		k			Credi t	Contac tHrs.	Evaluation Scheme (% of Total Marks)			Exam Duration (Hours)
Code	Title	L	T	P			Interna 1	Externa	Total	
BTME-2301	Strength of Materials - I	3	1	-	4	4	40	60	100	3 Hrs
BTME-2302	Theory of Machines - I	3	1	-	4	4	40	60	100	3 Hrs
BTME-2303	Machine Drawing with AutoCAD	1	-	6	4	7	40	60	100	3 Hrs
BTME-2304	Applied Thermodynamics - I	3	1	-	4	4	40	60	100	3 Hrs
BTME-2306	Engineering Materials & Metallurgy	3	-	-	3	3	40	60	100	3 Hrs
BTME-2307	Strength of Materials Lab.	1	-	2	1	2	60	40	100	3 Hrs
BTME-2308	Applied Thermodynamics Lab	1	-	2	1	2	60	40	100	3 Hrs
BTME-2310	Institutional Training	-	-	-	2	-	60	40	100	3 Hrs
	Elec	tive	Cou	irses	(Any o	one)				
BTME -2305	Manufacturing Processes-I	3	-	-	3	3	40	60	100	3 Hrs
BTME -2311	Non-Conventional Energy Resources	3	-	-	3	3	40	60	100	3 Hrs
BTME -2313	Digital Electronics	3	-	-	3	3	40	60	100	3 Hrs
BTME -2314	Object Oriented Programming using C++	3	-	-	3	3	40	60	100	3 Hrs

Program Code: ME-301

BTME -2315	Effective Writing Skills	3	-	-	3	3	40	60	100	3 Hrs
BTME -2316 Engine	Internal Combustion Engine	3	-	-	3	3	40	60	100	3 Hrs
	Total	16	3	-	26	29			900	27 Hrs

Program Code: ME-301

FOURTH SEMESTER

Subject			Contact Hours/Wee k		Credi t	Contac tHrs.	Sch	aluation eme (% al Mark	of	Exam Duratio n (Hours)
Code	Title	L	L T P			Interna l	Exter nal	Total	(110 111 5)	
BTME-2401	Strength of Materials - II	3	1	-	4	4	40	60	100	3 Hrs
BTME-2402	Theory of Machines- II	3	1	1	4	4	40	60	100	3 Hrs
BTME-2403	Fluid Mechanics	3	1	-	4	4	40	60	100	3 Hrs
BTME-2404	Applied Thermodynamics -II	3	1	-	4	4	40	60	100	3 Hrs
BTME-2405	Manufacturing Processes - II	3	ı	1	3	3	40	60	100	3 Hrs
BTME-2406	Theory of Machines Lab.	-	1	2	1	2	60	40	100	3 Hrs
BTME-2407	Fluid Mechanics Lab.	-	-	2	1	2	60	40	100	3 Hrs
BTME-2408	Manufacturing Practice Lab.	-	-	2	1	2	60	40	100	3 Hrs
	Total	15	4	6	22	25			800	24 Hrs

Program Code: ME-301

FIFTH SEMESTER

Subject			Contact Hours/Wee k		Credi t	Contac tHrs.	`		of	Exam Duration (Hours)
Code	Title	L	T	P			Interna l	Extern al	Total	
BTME-3500	Mathematics - III	3	1	-	4	4	40	60	100	3 Hrs
BTME-3501	Design of Machine Elements – I	4	1	-	5	5	40	60	100	3 Hrs
BTME-3502	Computer Aided Design & Manufacturing	3	-	-	3	3	40	60	100	3 Hrs
BTME-3503	Mechanical Measurements & Metrology	3	ı	-	3	3	40	60	100	3 Hrs
BTME-3504	Automobile Engineering	3	-	-	3	3	40	60	100	3 Hrs
BTME-3505	Industrial Automation & Robotics	3	ı	ı	3	3	40	60	100	3 Hrs
BTME-3506	Computer Aided Design and Manufacturing Lab.	-	1	2	1	2	60	40	100	3 Hrs
BTME-3507	Mechanical Measurements and Metrology Lab.	-	1	2	1	2	60	40	100	3 Hrs
BTME-3508	Automobile Engineering Lab.	-	1	2	1	2	60	40	100	3 Hrs
BTME-3509	Industrial Automation & Robotics Lab.	-	ı	2	1	2	60	40	100	3 Hrs
BTPD-3521	Personality Development-I	-	-	2	-	2	60	40	100	3 Hrs
BTME-3510	Industrial Training (at the end of 4 th sem.)	-	-		2	-	60	40	100	3 Hrs
Total			2	10	27	31			1200	36 Hrs

Program Code: ME-301

SIXTH SEMESTER

Subjec t			Contact Hours/Wee k		Credi t	Contac t Hrs.	Total Marks)			Exam Duration (Hours)
Code	Title	L	T	P			Interna l	Externa	Total	
BTME-3601	Design of Machine Elements - II	4	1	-	5	5	40	60	100	3 Hrs
BTME-3602	Heat Transfer	3	1	-	4	4	40	60	100	3 Hrs
BTME-3603	Fluid Machinery	3	1	-	4	4	40	60	100	3 Hrs
BTME-3604	Heat Transfer Lab.	-	-	2	1	2	60	40	100	3 Hrs
BTME-3605	Fluid Machinery Lab.	-	-	2	1	2	60	40	100	3 Hrs
BTPD-3621	Personality Development - II	-	-	2	-	2	60	40	100	3 Hrs
BTME-3606	Minor Project	-	-	2	1	2	60	40	100	3 Hrs
	Open E	lec	tive (Cour	ses (Ar	ny one)				
BTME-3600	Statistical & Numerical Methods in Engineering	3	-	-	3	3	40	60	100	3 Hrs
BTME-3600	Enterprise Resource Planning	3	-	-	3	3	40	60	100	3 Hrs
BTME-3600	Electrical Measuring Instrument	3	-	-	3	3	40	60	100	3 Hrs

BTME-3600	Wireless and Mobile Communication	3	-	-	3	3	40	60	100	3 Hrs		
	Department Elective Courses (Any one)											
BTME-3611	Automotive Chassis System	3	-	-	3	3	40	60	100	3 Hrs		
BTME-3612	Non Destructive Testing	3	-	-	3	3	40	60	100	3 Hrs		
BTME-3613	Product Design and Development	3	-	-	3	3	40	60	100	3 Hrs		
BTME-3614	Mechatronics	3	-	-	3	3	40	60	100	3 Hrs		
BTME-3615	Tool Design	3	-	-	3	3	40	60	100	3 Hrs		
Total			3	8	22	27			900	27 Hrs		

Program Code: ME-301

SEVENTH SEMESTER

Subjec t			Contact Hours/Wee k		Credi t	Contac tHrs.	· · · · · · · · · · · · · · · · · · ·)	Exam Duration (Hours)
Code	Title	L	T	P			Interna l	Externa l	Total	
BTME-4701	Industrial Engineering	3	-	-	3	3	40	60	100	3 Hrs
BTME-4702	Refrigeration & Air Conditioning	3	1	-	4	4	40	60	100	3 Hrs
BTME-4703	Mechanical Vibrations	3	1	-	4	4	40	60	100	3 Hrs
BTME-4704	Refrigeration & Air Conditioning Lab.	-	-	2	1	2	60	40	100	3 Hrs
BTME-4705	Mechanical Vibrations Lab.	-	-	2	1	2	60	40	100	3 Hrs
BTME-4706	Major Project	-	-	6	3	6	60	40	100	3 Hrs
	Open	Ele	ctive	Cou	irse (Ai	ny one)		<u> </u>		
BTME_4716	Human Resource Management	3	-	-	3	3	40	60	100	3 Hrs
BTME-4721	Operation Research	3	-	-	3	3	40	60	100	3 Hrs
BTME-4722	Material Management	3	-	-	3	3	40	60	100	3 Hrs
BTME-4723	Solar Energy	3	-	-	3	3	40	60	100	3 Hrs
BTME-4724	Optimization Techniques	3	-	-	3	3	40	60	100	3 Hrs
	Departmo	ent l	Elect	ive (Courses	(Any or	1e)	1		
BTME-4711	Automotive Control	3	-	-	3	3	40	60	100	3 Hrs

BTME-4712	Non Traditional Machining	3	-	-	3	3	40	60	100	3 Hrs
BTME-4713	Industrial Tribology	3	-	-	3	3	40	60	100	3 Hrs
BTME-4714	Finite Element Methods	3	ı	-	3	3	40	60	100	3 Hrs
BTME-4715	Statistical Quality Control	3	1	-	3	3	40	60	100	3 Hrs
BTME-4717	Automotive Aerodynamics	3	1	-	3	3	40	60	100	3 Hrs
BTME-4718	Electric & Hybrid Vehicles	3	1	-	3	3	40	60	100	3 Hrs
BTME-4719	Additive Manufacturing	3	1	-	3	3	40	60	100	3 Hrs
Total			2	10	22	27			800	24Hrs

Program Code: ME-301

EIGHT SEMESTER

Subject		Contact Hours/Wee k		Credi t	Contac tHrs.	Evaluation Scheme (% of Total Marks)			Exam Duration (Hours)	
Code Title			T	P			Interna l	Externa l	Total	
	Core Courses									
BTME-4801	Software Training	-	-	-	6	-	100	200	300	3 Hrs
BTME-4802 Industrial Training					10		200	300	500	3 Hrs
	Total	-	-	-	16	-		500	800	6 Hrs

SECTION 6

Detailed Syllabus with Course Outcomes

SYLLABUS

SEMESTER-III

Program Code: ME-301

SUBJECT TITLE: STRENGTH OF MATERIALS - I

SUBJECT CODE: BTME-2301

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks.

Contents of Syllabus

S.	Content	Contact Hrs
No.	Unit –I	12 Hrs
	Simple, Compound Stresses and Strains: Stress and Strain and their types, Hook's law, longitudinal and lateral strain, Poisson's ratio, stress-strain diagram for ductile and brittle materials, extension of a bar due to without and with self weight, bar of uniform strength, stress in a bar, elastic constants and their significance, relation between elastic constants, Young's modulus of elasticity, modulus of rigidity and bulk modulus. Temperature stress and strain calculation due to axial load and variation of temperature in single and compound bars. Two dimensional stress system, stress at a point on a plane, principal stresses and principal planes, Mohr's circle of stress ellipse of stress and their applications. Generalized Hook's law, principal stresses related to principal strains.	
2	Unit –II Bending Moment (B.M) and Shear Force (S.F) Diagrams: S.F and B.M definitions; relation between load, shear force and bending moment; B.M and S.F diagrams for cantilevers, simply supported beams with or without overhangs, and calculation of maximum B.M and S.F and the point of contra flexure under the following loads: a) Concentrated loads b) Uniformity distributed loads over the whole span or part of span c) Combination of concentrated and uniformly distributed load	18 Hrs

		T .
	d) Uniformly varying loads	
	Application of moments	
	Unit –III	
	Bending Stresses In Beams : Assumptions in the simple bending theory;	
	derivation of formula and its application to beams of rectangular,	
	circular and channel, I and T- sections. Combined direct and bending	
	stresses in afore-mentioned sections, composite / flitched beams.	
3	Unit –IV	10 Hrs
	Torsion: Derivation of torsion equation and its assumptions and	
	its application to the hollow and solid circular shafts. Torsional	
	rigidity, combined torsion and bending of circular shafts;	
	principal stress and maximum shear stresses under combined	
	loading of bending and torsion.	
4	Unit –V	10 Hrs
4	Unit –V Columns and struts: Introduction, failure of columns, Euler's	10 Hrs
4		10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications.	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications. Unit –VI	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications. Unit –VI Slope and deflection: Relationship between moment, slope and	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications. Unit –VI Slope and deflection: Relationship between moment, slope and deflection; method of integration, Macaulay's method, moment	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications. Unit –VI Slope and deflection: Relationship between moment, slope and deflection; method of integration, Macaulay's method, moment area method and use of these methods to calculate slope and	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications. Unit –VI Slope and deflection: Relationship between moment, slope and deflection; method of integration, Macaulay's method, moment area method and use of these methods to calculate slope and deflection for the following:	10 Hrs
4	Columns and struts: Introduction, failure of columns, Euler's formula, Rankine-Gordon's formula, Johnson's empirical formula for axially loaded columns and their applications. Unit –VI Slope and deflection: Relationship between moment, slope and deflection; method of integration, Macaulay's method, moment area method and use of these methods to calculate slope and deflection for the following: a) Cantilevers	10 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2301.1	Able to understand the theory of elasticity including strain/displacement and Hooke's law relationships
CO2	BTME-2301.2	Determine the resistance and deformation in machine members subjected to axial, flexural and tensional loads
CO3	BTME-2301.3	Able to analyze the stresses and deflections of beams under various loading conditions
C04	BTME-2301.4	Able to obtain solutions to column buckling and plate problems

Suggested Readings / Books:

- 1. D.S. Bedi, *Strength of Materials*, Khanna Book Publishing Company,1998, Reprint-2016
- 2. E.P. Popov, Mechanics of Materials-(SI Version), Prentice Hall India., 2006
- 3. R.S Lehri and A.S. Lehri, Strength of Materials, Kataria and Sons.,1998
- 4. S.S.Rattan, Strength of Materials, Tata McGraw Hill.,1996

- 5. Timoshenko and Young, *Elements of Strength of Materials*, East West Press (EWP), 2014.
- 6. James M Gere and Barry J. Goodno, *Strength of Materials*, Cengage Learning.,2006

Program Code: ME-301

SUBJECT TITLE: THEORY OF MACHINES-I

SUBJECT CODE: BTME-2302

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks.

Contents of Syllabus

S.	Contents	Contact
No.		Hrs
1	Unit –I	18 Hrs
	Basic Concept of machines: Link, Mechanism, Kinematic Pair and	
	Kinematic Chain, Principles of Inversion, Inversion of a Four Bar Chain,	
	Slider-Crank-Chain and Double Slider-Crank-Chain. Graphical and	
	Analytical methods for finding: Displacement, Velocity, and Acceleration of	
	mechanisms (including Corliolis Components).	
	Unit –II	
	Lower and higher Pairs: Universal Joint, Calculation of maximum Torque,	
	Steering Mechanisms including Ackerman and Davis approximate steering	
	mechanism, Engine Indicator, Pentograph, Straight Line Mechanisms,	
	Introduction to Higher Pairs With Examples	
2	Unit –III	6 Hrs
	Belts, Ropes and Chains: Material & Types of belt, Flat and V-belts, Rope	
	& Chain Drives, Idle Pulley, Intermediate or Counter Shaft Pulley, Angle	
	and Right Angle Drive, Quarter Turn Drive, Velocity Ratio, Crowning of	
	Pulley, Loose and fast pulley, stepped or cone pulleys, ratio of tension on	
	tight and slack side of belts, Length of belt, Power transmitted by belts	
	including consideration of Creep and Slip, Centrifugal Tensions and its	
	effect on power transmission	

3	Unit –IV	16 Hrs
	Cams: Types of cams and follower, definitions of terms connected with	
	cams. Displacement, velocity and acceleration diagrams for cam followers.	
	Analytical and Graphical design of cam profiles with various motions	
	(SHM, uniform velocity, uniform acceleration and retardation, cycloidal	
	Motion). Analysis of follower motion for circular, convex and tangent cam	
	profiles.	
	Unit –V	
	Friction Devices: Concepts of friction and wear related to bearing and	
	clutches. Types of brakes function of brakes. Braking of front and rear tyres	
	of a vehicle. Determination of braking capacity, Types of dynamometers,	
	(absorption, and transmission).	
4	Unit –VI	10 Hrs
	Flywheels: Turning moment and crank effort diagrams for reciprocating	
	machines' Fluctuations of speed, coefficient of fluctuation of speed and	
	energy, Determination of mass and dimensions of flywheel used for engines	
	and punching machines.	
	Unit –VII	
	Governors: Function, types and characteristics of governors. Watt, Porter	
	and Proell governors. Hartnell and Willson-Hartnell spring loaded	
	governors. Numerical problems related to these governors. Sensitivity,	
	stability, isochronisms and hunting of governors. Governor effort and	
	power, controlling force curve, effect of sleeve friction.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2302.1	Students will be able to analyze planer mechanisms terms of DoF, Gross Motion, Velocity and Acceleration of Points on Link / Links, Forces acting on links and joints
CO2	BTME-2302.2	Synthesize simple mechanisms
CO3	BTME-2302.3	Analyze and synthesis cams, clutches, and flywheel
C04	BTME-2302.4	Analyze and determine key kinematic parameters for friction mechanisms

Suggested Readings / Books:

- 1. S. S. Rattan, Theory of Machines, Tata McGraw Hill, New Delhi. 2010
- 2. JagdishLal, Theory of Mechanisms & Machines, Metropolitan Book Co. 2006
- 3. Thomas Beven, Theory of Machines, Longman's Green & Co., London. 2010
- 4. W. G. Green, Theory of Machines, Blackie & Sons, London 2012
- 5. V.P. Singh, Theory of Machines DhanpatRai. 2008

Program Code: ME-301

SUBJECT TITLE: MACHINE DRAWING WITH AUTO CAD

SUBJECT CODE: BTME-2303

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
1	0	6	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks.

Contents of Syllabus

S.No.	Contents	Contact Hrs
1	Unit –I Introduction: Principles of Drawing, Requirements of production drawing, Sectioning and conventional representation, Dimensioning, symbols of standard tolerances, Machining Symbols, introduction and Familiarization of Code IS: 296	
2	Unit –II Fasteners: Various types of screw threads, types of nuts and bolts, screwed fasteners, welding joints and riveted joints	10 Hrs
3	 Unit –III Assembly and Disassembly: a) Couplings: Solid or Rigid Coupling, Protected Type Flange coupling, Pin type flexible coupling, muff coupling, Oldham, universal coupling, claw coupling, cone friction clutch, free hand sketch of single plate friction clutch. b) Knuckle and cotter joints c) Pipe and Pipe Fittings: flanged joints, spigot an socket joint, union joint, hydraulic an expansion joint d) IC Engine Parts: Piston, connecting rod e) Boiler Mountings: Steam stop valve, feed check valve, safety valve, blow off cock. f) Bearings: Swivel bearing, thrust bearing, Plummer block, angular plumber block g) Miscellaneous: Screw Jack, Drill Press Vice, Crane hook, Tool 	40 Hrs

Post, Tail Stock, Drilling Jig. Drafting of simple mechanical	
components on computer.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2303.1	To make students understand the principles and requirements of production drawings and learning how to assemble and disassemble important parts used in major mechanical engineering applications
CO2	BTME-2303.2	To understand the drawings of mechanical components and their assemblies along with their utility for design of components
CO3	BTME-2303.3	Draw the projections of various mechanical components in terms of top, side and front views
C04	BTME-2303.4	Draw the projections of various miscellaneous components in terms of top, side and front views

Suggested Readings / Books:

- 1. Ajit Singh, Machine Drawing (including Auto CAD), Tata McGraw Hill., 2006
- 2. A Text Book of Machine Drawing by R. K. Dhawan, S. Chand and Co. Ltd., 1998
- 3. N.D. Bhatt, Machine Drawing, Charotar publications., 1995
- 4. N. Sidheshwar, Machine Drawing, Tata McGraw Hill. 2002
- 5. P.S. Gill, Machine Drawing, BD Kataria and Sons.2000
- 6. V Lakshmi Narayanan and Mathur, Text-book of Machine Drawing. 2004

Program Code: ME-301

SUBJECT TITLE: APPLIED THERMODYNAMICS-I

SUBJECT CODE: BTME-2304

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

Contents of Syllabus

S. No.	Contents	Contact Hrs
1	Unit –I	16 Hrs
	Combustion: Combustion Equations (Stoichiometric and non-	
	Stoichiometric). Combustion problems in Boilers and IC	
	engines/Calculations of air fuel ratio, Analysis of products of combustion,	
	Conversion of volumetric analysis into gravimetric analysis and vice-	
	versa, Actual weight of air supplied, Use of mols, for solution of	
	combustion problems, Heat of formation, Enthalpy of formation,	
	Enthalpy of reaction, Adiabatic flame temperature.	
	Unit –II	
	IC Engines Introduction: Actual Engine Indicator diagrams and valve-	
	timing diagrams for two stroke and four stroke S.I. and C.I. Engines;	
	Construction and Working Principle of Wankel rotary engine;	
	Principle of simple carburator, Injection systems in Diesel and Petrol	
	Engines(Direct Injection, MPFI in SI and CI Engines, respectively).	
	Essential requirements for Petrol and Diesel Fuels. Theory of combustion	
	in SI and CI Engines; Various stages of combustion; Pressure-time/crank	
	- Angle diagrams; Various phenomenon such as turbulence, squish and	
	swirl, dissociation, pre-ignition/auto- ignition, and after burning etc.;	
	Theory of knocking (ie,. detonation) in SI and CI Engines; Effect of	
	engine variables on the Delay Period in SI and CI engines; Effect of	
	various parameters on knock in SI and CI Engines; Methods employed to	
	reduce knock in SI and CI Engines; Octane and Cetane rating of fuels;	
	Knockmeter; Dopes and inhibitors; Performance curves/maps of SI and	

	CI Engines; Effect of knocking on engine performance; Effect of <i>compression ratio</i> and <i>air-fuel ratio</i> on power and efficiency of engine; Variation of engine power with altitude; Supercharging and turbo	
	charging of SI and CI Engines; Advantages and applications of	
	supercharging; Emissions from SI and CI Engines and methods to	
	reduce/control them. Logarithmic plotting of PV-diagrams. High speed	
	Engine Indicators.	
2	Unit –III	10 Hrs
	Properties of Steam	
	Pure substance; Steam and its formation at constant pressure: wet, dry,	
	saturated and super-heated steam; Sensible heat(enthalpy), latent heat and	
	total heat (enthalpy) of steam; dryness fraction and its determination;	
	degree of superheat and degree of sub-cool; Entropy and internal energy	
	of steam; Use of Steam Tables and Mollier Chart; Basic thermodynamic	
	processes with steam (isochoric, isobaric, isothermal, isentropic and	
	adiabatic process) and their representation on T-S Chart and Mollier	
	Charts(h-s diagrams). Significance of Mollier Charts.	
	Unit –IV	
	Steam Generators - Definition: Classification and Applications of	
	Steam Generators; Working and constructional details of fire-tube and water-tube boilers: (Cochran, Lancashire, Babcock and Wilcox boilers);	
	Merits and demerits of fire-tube and water-tube boilers; Modern high	
	pressure boilers (Benson boiler, La Mont boiler) and Super critical boilers	
	(Once through boilers- <i>Tower type</i>); Advantages of forced circulation;	
	Description of boiler mountings and accessories: Different types of	
	Safety Valves, Water level indicator, pressure gauge, Fusible plug, Feed	
	pump, Feed Check Valve, Blow-off Cock, Steam Stop-Valve,	
	Economiser, Super-heater; Air pre-heater and Steam accumulators; Boiler	
	performance: equivalent evaporation, boiler efficiency.	
3	Unit –V	22 Hrs
	Vapour Power Cycle Carnot Cycle and its limitations; Rankine steam	
	power cycle, Ideal and actual; Mean temperature of heat addition; Effect	
	of pressure, temperature and vacuum on Rankine Efficiency; Rankine	
	Cycle Efficiency and methods of improving Rankine efficiency: Reheat	
	cycle, Bleeding (feed-water-heating), Regenerative Cycle, Combined	
	reheat-regenerative cycle; Ideal working fluid; Binary vapour cycle,	
	Combined power and heating cycles.	
	Unit –VI	
	Steam Nozzles: Definition, types and utility of nozzles; Flow of steam	
	through nozzles; Condition for maximum discharge through nozzle; Critical pressure ratio, its significance and its effect on discharge; Area of	
	throat and at exit for maximum discharge; Effect of friction; Nozzle	
	efficiency; Convergent and convergent-divergent nozzles; Calculation of	
	Nozzle dimensions (length and diameters of throat and exit);	
	Supersaturated (or metastable) flow through nozzle.	
	Unit -VII	
1		

	Steam Turbines Introduction; Classification; Impulse versus Reaction turbines. Simple impulse turbine: pressure and velocity variation, Velocity diagrams/triangles; Combined velocity diagram/triangle and calculations for force, axial thrust, work, power, blade efficiency, stage efficiency, maximum work and maximum efficiency, effect of blade friction on velocity diagram, effect of speed ratio on blade efficiency, condition for axial discharge.	
4	Unit –VIII De Laval Turbine: Compounding of impulse turbines: purpose, types and	12 Hrs
	pressure and velocity variation, velocity diagrams/triangles, combined	
	velocity diagram/triangle and calculations for force, axial thrust, work, power, blade efficiency, stage efficiency, overall efficiency and relative	
	efficiency.	
	Unit –IX	
	Impulse-Reaction Turbine: pressure and velocity variation, velocity	
	diagrams/triangles, Degree of reaction, combined velocity	
	diagram/triangle and calculations for force, axial thrust, work, power,	
	blade efficiency, stage efficiency, overall efficiency and relative efficiency, maximum work and maximum efficiency; Calculations of	
	blade height; Multistaging : Overall efficiency and relative efficiency;	
	Reheating, Reheat factor and condition curve; Losses in steam turbines;	
	Back pressure and extraction turbines; Co-generation; Economic	
	assessment; Governing of steam turbines.	
	Unit –X	
	Steam Condensers Function; Elements of condensing unit; Types of	
	condensers; Dalton's law of partial pressures applied to the condenser	
	problems; Condenser and vacuum efficiencies; Cooling water calculations;	
	Effect of air leakage; Method to check and prevent air infiltration;	
	Description of air pump and calculation of its capacity; Cooling towers: function, types and their operation.	
	runction, types and then operation.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2304.1	To understand combustion phenomenon and thermal analysis of steam	
		power plant components.	
CO2	BTME-2304.2	Able to understand the fundamental of the first and second laws of	
		thermodynamics and their application to a wide range of systems.	
CO3	BTME-2304.3	Familiar with the fundamental of the air standard cycles and their	
		applications	
C04	BTME-2304.4	Have Knowledge of the operation, construction and design of various	
		components of power plants	

Suggested Readings / Books:

- 1. R. Yadav, Sanjay and Rajay, Applied Thermodynamics, Central Publishing House, 1992.
- 2. J.S. Rajadurai, Thermodynamics and Thermal Engineering, New Age International (P) Ltd. Publishers. 1996

- 3. D.S. Kumar and V.P. Vasandani, Heat Engineering, Metropolitan Book Co. Pvt. Ltd.2002
- 4. K. Soman, Thermal Engineering, PHI Learning Pvt. Ltd. 2006
- 5. G. Rogers and Y. Mayhew, Engineering Thermodynamics, Pearson. 2008
- 6. W.A.J. Keartan, Steam Turbine: Theory and Practice, ELBS Series. 2007
- 7. Heywood, Fundamentals of IC Engines, McGraw Hill. 2010
- 8. V. Ganeshan, Internal Combustion Engines, Tata McGRaw Hill. 2006

Program Code: ME-301

SUBJECT TITLE: ENGINEERING MATERIALS & METALLURGY

SUBJECT CODE: BTME-2306

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

Contents of Syllabus

S. No.	Contents	Contact Hrs
1	Unit –I	12 Hrs
	Crystallography: Atomic structure of metals, atomic bonding in solids, crystal structures, crystal lattice of body centered cubic, face centered cubic, closed packed hexagonal; crystalline and non crystalline materials; crystallographic notation of atomic planes; polymorphism and allotropy; imperfection in solids: theoretical yield strength, point defects, line defects and dislocations, interfacial defects, bulk or volume defects. Diffusion: diffusion mechanisms, steady-state and non-steady-state diffusion, factors affecting diffusion. Theories of plastic deformation, recovery, re-crystallization.	
2	Unit –II	15 Hrs
	Phase Transformation: General principles of phase transformation in alloys, phase rule and equilibrium diagrams, Equilibrium diagrams of Binary systems. Iron carbon equilibrium diagram and various phase transformations. Time temperature transformation curves (TTT curves): fundamentals, construction and applications.	
3	Unit –III	10 Hrs
	Heat Treatment: Principles and applications. Processes viz. annealing, normalizing, hardening, tempering. Surface hardening of steels: Principles of induction and oxyacetylene flame hardening. Procedure for carburising, nitriding and cyaniding. Harden-ability: determination of harden-ability. Jominy end-quench test. Defects due to heat treatment and their remedies; effects produced by alloying elements. Composition of	

	alloy steels.	
4	Unit –IV	8 Hrs
	Ferrous Metals and Their Alloys: Introduction, classification,	
	composition of alloys, effect of alloying elements (Si, Mn, Ni, Cr, Mo, W,	
	Al) on the structures and properties of steel.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2306.1	The students will learn the atomic structure of metals, imperfections, diffusion mechanisms and theories of plastic deformation
CO2	BTME-2306.2	To understand equilibrium diagrams, time-temperature transformation curves and heat treatment processes
CO3	BTME-2306.3	Analyze the various properties of Engineering materials
C04	BTME-2306.4	Determine the various stages of materials along with the method of cooling

Suggested Readings / Books:

- 1. B. Zakharov, Heat Treatment of Metals, University Press. 2006
- 2. T. Goel and R.S. Walia, Engineering Materials & Metallurgy. 2002
- 3. Sidney H Avner, Introduction to Physical Metallurgy, Tata Mcgraw-Hill. 2015
- 4. V. Raghavan, Physical Metallurgy: Principles and Practice, PHI Learning. 2004
- 5. Y. Lakhin, Engineering Physical Metallurgy, Mir Publishers. 2005

Program Code: ME-301

SUBJECT TITLE: STRENGTH OF MATERIALS LAB

SUBJECT CODE: BTME-2307

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	To perform tensile test in ductile and brittle materials and to draw stress-strain curve and to determine various mechanical properties.	2 Hrs
2	To perform compression test on Cast Iron.	2 Hrs
3	To perform any one hardness tests (Rockwell, Brinell&Vicker's test).	2 Hrs
4	To perform impact test to determine impact strength.	2 Hrs
5	To perform torsion test and to determine various mechanical properties	2 Hrs
6	To perform Fatigue test on circular test piece.	2 Hrs
7	To perform bending test on beam and to determine the Young's modulus and modulus of rupture.	2 Hrs
8	Determination of Bucking loads of long columns with different end conditions	2 Hrs
9	To evaluate the stiffness and modulus of rigidity of helical coil spring.	2 Hrs

CO1	BTME-2307.1	Perform the tensile test on mild steel specimen along with its stress-strain plot
CO2	BTME-2307.2	Perform the compression and hardness test on specimen i.e. cast iron, mild steel, etc.
CO3	BTME-2307.3	Evaluate the torsion and fatigue test on specimens for determining its durability
C04	BTME-2307.4	Perform other test such as fatigue test, bending test, etc. on the specimen

Program Code: ME-301

SUBJECT TITLE: APPLIED THERMODYNAMICS LAB

SUBJECT CODE: BTME-2308

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Study of construction and operation of 2 stroke and 4 stroke Petrol and	2 Hrs
	Diesel engines using actual engines or models	
2	To plot actual valve timing diagram of a 4 stroke petrol and diesel	2 Hrs
	engines and study its impact on the performance of engine	
3	Study of working, construction, mountings and accessories of various	2 Hrs
	types of boilers.	
4	To perform a boiler trial to estimate equivalent evaporation and	2 Hrs
	efficiency of a fire tube/ water tube boiler.	
5	Determination of dryness fraction of steam and estimation of brake	2 Hrs
	power, Rankine efficiency, relative efficiency, generator efficiency, and	
	overall efficiency of an impulse steam turbine and to plot a Willian's line	
6	Determine the brake power, indicated power, friction power and	2 Hrs
	mechanical efficiency of a multi cylinder petrol engine running at	
	constant speed (Morse Test).	
	Performance testing of a diesel engine from no load to full load (at	
	constant speed) for a single cylinder/ multi- cylinder engine in terms of	
	brake power, indicated power, mechanical efficiency and specific fuel	
	consumption.	
7	Performance testing of a petrol engine from no load to full load (at	2 Hrs
	constant speed) for a single cylinder/ multi- cylinder engine in terms of	
	brake power, indicated power, mechanical efficiency and specific fuel	
	consumption.	

CO1	BTME-2308.1	Study the constructional features of different IC engine along with their
		valve timing diagrams
CO2	BTME-2308.2	Study the constructional feature of different types of boilers and their
		practical applications
CO3	BTME-2308.3	To determine the indicated power, friction power and mechanical efficiency
		of IC engine
C04	BTME-2308.4	To determine the performance testing of a petrol engine from no load to full
		load (at constant speed) for a single cylinder/ multi- cylinder

Program Code: ME-301

SUBJECT TITLE: ENGINEERING MATERIALS & METALLURGY LAB

SUBJECT CODE: BTME-2309

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Preparation of models/charts related to atomic/crystal structure of metals.	2 Hrs
2	Annealing the steel specimen and study the effect of annealing time and temperature on hardness of steel	2 Hrs
3	Hardening the steel specimen and study the effect of quenching medium on hardness of steel.	2 Hrs
4	Practice of specimen preparation (cutting, mounting, polishing, etching) of mild steel, aluminium and hardened steel specimens	2 Hrs
5	Study of the microstructure of prepared specimens of mild steel, Aluminium and hardened steel.	2 Hrs
6	Identification of ferrite and pearlite constituents in given specimen of mild steel	2 Hrs
7	Determination of hardenabilty of steel by Jominy End Quench Test.	2 Hrs

CO1	BTME-2309.1	Determine and make a model for the different types of crystal structure of metals
CO2	BTME-2309.2	To study the working principlesof metallurgical microscope
CO3	BTME-2309.3	Prepare a mild steel samples related to cutting, polishing, etching
C04	BTME-2309.4	To study the different methods such as annealing, normalizing, hardening, etc.

Program Code: ME-301

SUBJECT TITLE: INSTITUTIONAL TRAINING

SUBJECT CODE: BTME-2310

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	2

Internal Assessment: 100

In this student has to submit a file of what they have did in their intuitional training

CO1	BTME-2310.1	Understand the basics of workshop technology
CO2	BTME-2310.2	Prepare a job related to carpentry shop, fitting shop, foundry shop
CO3	BTME-2310.3	Prepare a job related to smithy shop, machine shop
C04	BTME-2310.4	To study the basic circuits related to electrical and electronics shop

(Department Elective: I)

SUBJECT TITLE: MANUFACTURING PROCESSES -I

SUBJECT CODE: BTME-2305

SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Unit –I Introduction: Classification of manufacturing processes, selection criteria for manufacturing processes, general trends in manufacturing	5 Hrs
2	Unit –II Casting Processes: Introduction to metal casting. patterns: types, materials and allowances. Moulding materials: moulding sand compositions and properties, sand testing, types of moulds, moulding machines. Cores: function, types, core making process, core-prints, chaplets. Elements of gating system and risers and their design. Design considerations of castings. Melting furnaces, cupola furnace, charge calculations, induction furnaces. Casting processes: sand casting, shell mould casting, investment casting, permanent mould casting, full mould casting, vacuum casting, die casting, centrifugal casting, and continuous casting. Metallurgical considerations in casting, Solidification of metals and alloys, directional solidification, segregation, nucleation and grain growth, critical size of nucleus. Cleaning and finishing of castings	15 Hrs
3	Unit –III Welding Processes: Introduction and classification of welding processes, to welding processes, weldability, welding terminology, general principles, welding positions, and filler metals. Gas welding: principle and practice, oxy-acetylene welding equipment, oxy-hydrogen welding. Flame cutting. Electric arc welding: principle, equipment, relative merits of AC & DC arc welding. Welding processes: manual metal arc welding, MIG welding, TIG welding, plasma arc welding,	15 Hrs

	submerged arc welding. Welding arc and its characteristics, arc stability, and arc blow. Thermal effects on weldment: heat affected zone, grain size and its control. Electrodes: types, selection, electrode coating ingredients and their function. Resistance welding: principle and their types i.e. spot, seam, projection, up-set and flash. Spot welding machine. Advanced welding processes: friction welding, friction stir welding, ultrasonic welding, laser beam welding, plasma arc welding, electron beam welding, atomic hydrogen welding, explosive welding, thermit welding, and electro slag welding. Considerations in weld joint design. Other joining processes: soldering, brazing, braze welding.	
4	Unit –IV Inspection and Testing: Casting defects, their causes and remedies. Welding defects, their causes and remedies. Destructive and non-destructive testing: visual inspection, x-ray radiography, magnetic particle inspection, dye penetrate test, ultrasonic inspection, eddy current testing, hardness testing, and micro hardness testing.	10 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2305.1	To provide students with an overview of a wide variety of manufacturing processes for processing of engineering materials
CO2	BTME-2305.2	To learn principles, operations and capabilities of various metal casting and metal joining processes
CO3	BTME-2305.3	To learn about the casting defects, their causes and remedies in these processes
C04	BTME-2305.4	To analyze the inspection and testing of various mechanical materials

- 1. Manna, A Textbook of Manufacturing Science and Technology, PHI Publishers. 2001
- 2. H.S. Shan, Manufacturing Processes, Vol.I., Pearson Publishers., 2002
- 3. P. N. Rao, Manufacturing Technology, Foundry, Forming & Welding, Tata McGraw Hill. 2006
- 4. R.S. Parmar , Welding Engineering & Technology, Khanna Publishers 1999.
- 5. SeropeKalpakjian and Steven R. Schmid, Manufacturing Engineering and Technology, Pearson Publishers. 2008

(Department Elective: I)

SUBJECT TITLE: NON CONVENTIONAL ENERGY

SUBJECT CODE: BMEC-2311

SEMESTER: 3rd

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	ContactHrs
1	Introduction: Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements	10 Hrs
2	Solar Energy: Solar radiation - beam and diffuse radiation; earth sun angles, attenuation and measurement of solar radiation; Optical properties of materials and selective surfaces; Principles, general description and design procedures of flat Platte and concentrating collectors; Performance analysis of cylindrical and parabolic collectors; Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries; economic analysis of solar systems.	7 Hrs
3	Wind Energy: Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of accodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection	10 Hrs

	considerations.	
4	Direct energy conversion systems: i) Magnetic Hydrodynamic (MHD) Generator: gas conductivity and MHD equations; operating principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields. ii) Thermo-electric generators: Thermo-electric effects and materials; thermo-electric devices and types of thermo-electric generators; thermo-electric refrigeration. iv) iii) Thermionic generators: thermoionic emission and materials; working principle of thermionic Fuel Cells: thermodynamic aspects; types, components and working of fuel cells.	8 Hrs
	v) Performance, applications and economic aspects of above mentioned	
	direct energy conversions systems.	
5	 Miscellaneous Non-Conventional energy Systems: i) Bio-mass: Concept of bio-mass conversion, photo-synthesis and biogasification; Bio gas generators and plants - their types constructional features and functioning; digesters and their design; Fuel properties of bio gas and community bio gas plants ii) Geothermal: Sources of geothermal energy - types, constructional features and associated prime movers. iii) Tidal and wave energy: Basic principles and components of tidal and wave energy plants; single basin and double basin tidal power plants; conversion devices Advantages/disadvantages and applications of above mentioned energy systems. 	10 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2311.1	To understand need and Significance of renewable and non-renewable energy sources
CO2	BTME-2311.2	To understand the working of various energy sources
CO3	BTME-2311.3	Analyze of various direct energy conversion systems
C04	BTME-2311.4	The student shall be competent enough to make use of modern tools and software's for analyzing and solving real life problems

- 1. H.P. Garg and Jai Prakash, Solar Energy: Fundamentals and Applications, Tata McGraw Hill.
- 2. S.P. Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill.
- 3. John A. Duffic and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley.
- 4. S. L. Sheldon, Chang, Energy Conversion, Prentice Hall.
- 5. O. M. Bockris and S. Srinivasan, Fuel Cells, McGraw Hill.

(Department Elective: I)

SUBJECT TITLE: INDUSTRIAL ENGINEERING

SUBJECT CODE: BMEC-2312

SEMESTER: 3rd

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Introduction: Definition and scope of industrial engineering, role of an industrial engineer in industry, functions of industrial engineer. Department and its organization, qualities of an industrial engineer Plant Layout and Material Handling: Different types of layouts viz. Product, Process and combination layouts, Introduction to layouts based on GT, JIT and Cellular, manufacturing systems, development of plant layout, types of material handling equipment, relationship of material handling with plant layouts.	
2	Work Study: Areas of applications of work study in industry, method study and work measurements and their interrelationship, reaction of management and labour to work study, role of work study in improving plant productivity and safety.	7 Hrs
3	Method Study: Objectives and procedure for methods analysis; select, record, examine, develop, define, install and maintain, recording techniques, micro motion and macro motion Study; Principles of motion economy, normal work areas and workplace design. Work Measurement: Objectives, work measurement techniques - time study, work sampling, Predetermined motion time standards (PMTS), Determination of time standards, Observed time, Basic time, Normal Time, Rating Factors, allowances, Standard Time.	10 Hrs

4	Value Engineering: Types of values, concept of value engineering,	8 Hrs
	phases of value engineering Studies, application of value engineering.	
5	Work Design: Concepts of job enlargements, job enrichment and job	10 Hrs
	rotation, effective job design considering technological and behavioral	
	factors.	
	Ergonomics: Introduction to ergonomics consideration in designing Man	
	Machine systems with special reference to design of displays and	
	controls.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2312.1	Understand the basic concepts of production, productivity and function of management
CO2	BTME-2312.2	To gain knowledge of hierarchy, principles and dimensions of planning function of organizations
CO3	BTME-2312.3	Determine the various theories and approaches related to Industrial Engineering
C04	BTME-2312.4	Discuss the importance of Value Engineering in today's Industry

- 1. Hicks, "Industrial Engg. And management ",Tata McGraw Hill. 2. Ulrich, "Product Design and Development",Tata McGraw Hill
- 3. Suresh Dalela and Saurabh, "Work Study and ergonomics", Standard Publishers.
- 4. R. Bernes, "Motion and time study", John Wiley and sons.5. D. J. Oborne, "Ergonomics at work", John Wiley and sons.

(Department Elective: I)

SUBJECT TITLE: DIGITAL ELECTRNICS

SUBJECT CODE: BMEC-2313

SEMESTER: 3rd

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

	Contents	Contact Hrs
S.No.		
1	Number system and codes: Binary, octal, hexadecimal and decimal	10 Hrs
	Number systems and their inter conversion, BCD numbers (8421-2421),	
	gray code, excess–3 code, cyclic code, code conversion, ASCII, EBCDIC	
	codes. Binary addition and subtraction, signed and unsigned binary	
	numbers, 1's and 2's complement representation.	
2	Boolean Algebra: Basic logic circuits: Logic gates (AND, OR, NOT,	7 Hrs
	NAND, NOR, Ex-OR, Ex- NOR and their truth tables,), Universal	
	Gates, Laws of Boolean algebra, De-Morgan's theorem, Min term, Max	
	term, POS, SOP, KMap, Simplification by boolean theorems, don't care	
	condition Logic Families: Introduction to digital logic family such as	
	RTL, DTL, TTL, ECL, CMOS, IIR, HTL etc., their comparative study,	
	Basic circuit, performance characteristics, Wired logic, open collector	
	output etc.	
3	Combinational Logic: The Half adder, the full adder, subtractor circuit.	10 Hrs
	Multiplxer de-	
	multiplexer, decorder, BCD to seven segment Decorder, encoders.	
4	Flip flop and Timing circuit: set-reset laches, D-flipflop, R-S flip-flop, J-	8 Hrs
	K Flip-flop, Master	
	slave Flip flop, edge triggered flip-flop, T flip-flop.	
5	Registers & Counters: Synchronous/Asynchronous counter	10 Hrs

operation,Up/down synchronous	
counter, application of counter, Serial in/Serial out shift register, Serial	
in/Serial out shift register,	
Serial in/parallel out shift register, parallel in/ parallel out shift register,	
parallel in/Serial out shift	
register, Bi-directional register.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1		To present a problem oriented introductory knowledge of Digital circuits and its applications.
CO2	BTME-2313.2	Analyze the number system and codes
CO3	BTME-2313.3	To focus on the study of electronic circuits.
C04	BTME-2313.4	Analyze the registers &counters

- 1. Digital Fundamentals by Morris and Mano, PHI Publication
- 2. Fundamental of digital circuits by A.ANANDKUMAR, PHI Publication
- 3. Digital Fundamaentals by FLOYD & JAIN, Pearsons Pub
- 4. Fundamentals of Logic Design by Charles H. Roth Thomson

(Department Elective: I)

SUBJECT TITLE: OBJECT ORIENTED PROGRAMMING UISNG C++

SUBJECT CODE: BMEC-2314

SEMESTER: 3rd

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Introduction to C++ and Object oriented Concepts C++ Standard Library,	15 Hrs
	Basics of a Typical C++ Environment, Pre-processors Directives,	
	illustrative Simple C++ Programs. Header Files and Namespaces, library	
	files. Introduction to Objects and Object Oriented Programming,	
	Encapsulation (Information Hiding), Access Modifiers: Controlling	
	access to a class, method, or variable (public, protected, private,	
	package), Other Modifiers, Polymorphism: Overloading, Inheritance,	
	Overriding Methods, Abstract Classes, Reusability, Class's Behaviors.	
2	Classes and Data Abstraction:	12 Hrs
	Introduction, Structure Definitions, Accessing Members of Structures,	
	Class Scope and accessing Class Members, Separating Interface from	
	Implementation, Controlling Access Function And Utility Functions,	
	Initializing Class Objects: Constructors, Using Default Arguments With	
	Constructors, Using Destructors, Classes: Const(Constant) Object And	
	Const Member Functions, Object as Member of Classes, Friend Function	
	and Friend Classes, Using This Pointer, Dynamic Memory Allocation	
	with New and Delete, Static Class Members, Container Classes And	
	Integrators, Proxy Classes, Function overloading.	
3	Operator Overloading, Inheritance, and Virtual Functions and	10 Hrs
	Polymorphism: Fundamentals of Operator Overloading, Restrictions On	

	Operators Overloading, Operator Functions as Class Members vs. as	
	Friend Functions, Overloading, <<, >> Overloading Unary Operators,	
	Overloading Binary Operators. Introduction to Inheritance, Base Classes	
	And Derived Classes, Protected Members, Casting Base- Class Pointers	
	to Derived- Class Pointers, Using Member Functions, Overriding Base –	
	Class Members in a Derived Class, Public, Protected and Private	
	Inheritance, Using Constructors and Destructors in derived Classes,	
	Implicit Derived –Class Object To Base- Class Object Conversion,	
	Composition Vs. Inheritance. Introduction to Virtual Functions, Abstract	
	Base Classes And Concrete Classes, Polymorphism, New Classes And	
	Dynamic Binding, Virtual Destructors, Polymorphism, Dynamic Binding.	
4	Files and I/O Streams and Templates and Exception Handling:	8 Hrs
	Files and Streams, Creating a Sequential Access File, Reading Data From	
	A Sequential Access File, Updating Sequential Access Files, Random	
	Access Files, Creating A Random Access File, Writing Data Randomly	
	To a Random Access File, Reading Data Sequentially from a Random	
	Access File. Stream Input/Output Classes and Objects, Stream Output,	
	Stream Input, Unformatted I/O (with read and write), Stream	
	Manipulators, Stream Format States, Stream Error States.	
	Function Templates, Overloading Template Functions, Class Template,	
	Class Templates and Non-Type Parameters, Templates and Inheritance,	
	Templates and Friends, Templates and Static Members. Introduction,	
	Basics of C++ Exception Handling: Try Throw, Catch, Throwing an	
	Exception, Catching an Exception, Rethrowing an Exception, Exception	
	specifications, Processing Unexpected Exceptions, Stack Unwinding,	
	Constructors, Destructors and Exception Handling, Exceptions and	
	Inheritance.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2314.1	Introduce the student to the concepts of C++ in computer science.	
CO2	BTME-2314.2	Acquire knowledge to make functions, files etc.	
CO3	BTME-2314.3	Knowledge of programming language.	
C04	BTME-2314.4	Basic understanding on programming.	

- 1. C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall
- 2. Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press
- 3. Programming with C++ By D Ravichandran, 2003, T.M.H

Program Code: ME-301

(Department Elective: I)

SUBJECT TITLE: EFFECTIVE WRITING SKILLS

SUBJECT CODE: BMEC-2315

SEMESTER: 3rd

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

Contents of Syllabus

S.	Contents	Contact Hrs
No.		
1	Introduction to Effective Writing, Effective Writing as an Art	15 Hrs
	Principles of Effective Writing, Types and Stages of Effective Writing	
2	Notions of Correctness and Appropriateness, Part I, Notions of	12 Hrs
	Correctness and Appropriateness, Part II, Essay Writing, Types of	
	Essays, Essentials of Academic Writing, Part I, Essentials of Academic	
	Writing, Part II	
3	Business Writing and its Functions, Mechanics of Business Writing,	10 Hrs
	Business Letters and Memos, Format of Business Letters and Memos	
4	Types of Business Letter, Sales, Complaint and Adjustment Letters,	8 Hrs
	Report Writing, Strategies and Structure of Reports, Style of Report	
	Writing, Creative Writing	

CO1	BTME-2315.1	Introduce the student to the concepts of effective writing
CO2	BTME-2315.2	Acquire knowledge to Notions of Correctness and Appropriateness
CO3	BTME-2315.3	Knowledge of Business Writing and its Functions
C04	BTME-2315.4	Basic understanding on report writing

- 1. Turk, Christopher and John Kirkman. Effective Writing. London and New York: Chapman& Hall. Indian Reprint 2003
- 2. Pinker, Steven. The Sense of Style: The Thinking Person's Guide to Writing in the 21st Century. Penguin Books, Reprint edition, 2015
- 3. Seely, John. Oxford Guide to Effective Writing and Speaking. OUP 2nd edition, 2005
- 4. Goins, Jeff. You Are a Writer (So Start Acting Like One). Tribe Press
- 5. Brohaugh, William. Write Tight: Say Exactly What You Mean with Precision and Power.
- 6. Janzer. Anne. The Writer's Process: Getting Your Brain in Gear. Cuesta Park Consulting, 201
- 7. King, Stephen. On Writing: A Memoir of the Craft. Scribner, 2010

(Department Elective: I)

SUBJECT TITLE: I. C. ENGINES SUBJECT CODE: BTME-2316

SEMESTER: 3RD

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	ContactHrs
1	Introduction to IC Engines: Definition of engine; Heat Engine, Historical Development of IC Engines, Classification & Nomenclature, Application of IC Engines, Air Standard Cycle, Carnot Cycle, Sterling Cycle, Ericson Cycle, Otto Cycle, Diesel cycle, Dual Cycle, Thermodynamics Analysis of these cycles Actual Working of I.C. Engine: Working of 4 stroke petrol & diesel engines and their valve timing diagram, working of 2-stroke petrol & diesel engines & their valve timing diagrams, comparison of two stroke & four stroke engines, Actual working of 2 & 4 stroke gas engine and their valve diagram. Fuel Air Cycles and their analysis: Introduction to fuel air cycles and their significance, composition of cylinder gases, variable specific heats, Dissociation, effect of no. of moles, comparison of air standards & fuel air cycles, effect of operating variable like compression ratio, fuel air ratio, actual cycles and their analysis; Difference between Actual and Fuel-Air Cycle, Actual and Fuel-Air Cycles for S.I. and C.I. Engines.	12 Hrs
2	IC Engine Fuels: Introduction, types of fuels, solid, liquid and gaseous fuels, chemical structure of petroleum, petroleum refining process, important qualities of S.I. & C.I. Engine fuels and their rating. Combustion of fuels; Calorific valves of fuels, theoretical determination	10 Hrs

	of CV of fuel, combustion equation for hydrocarbon fuels, determination of minimum air required for combustion, conversions of volumetric analysis of mass analysis, Determination of air supplied from volumetric analysis of Dry flue gases, Determination of excess air supplied, Determination of % of carbon in fuel burning to CO & CO2, Determination of minimum quantity of air supplied. Fuel Supply System: Fuel Supply System and fuel pumps, properties of air fuel mixture, a sample carburetor an its working, approximate analysis of simple carburetor, Actual air fuel ratio of single jet carburetor, Exact analysis of single jet carburetor, ideal requirements from a carburetor, limitations of single jet carburetor, different devices used to meet the requirements of an ideal carburetor. Different modern carburetors, introduction to petrol injection, fuel injection systems for C.I.	
3	Fuel Supply System: Fuel Supply System and fuel pumps, properties of air fuel mixture, a sample carburetor an its working, approximate analysis of simple carburetor, Actual air fuel ratio of single jet carburetor, Exact analysis of single jet carburetor, ideal requirements from a carburetor, limitations of single jet carburetor, different devices used to meet the requirements of an ideal carburetor. Different modern carburetors, introduction to petrol injection, fuel injection systems for C.I. Engines: Classification of injection systems, injection pump, injection pump governor, mechanical governor, fuel injection systems, injection pump Governor, Mechanical Governor, Fuel Injector, Nozzle, Injection of S.I. Engines, Fuel Filters.	8 Hrs
4	Combustion in S.I. Engines: Introduction, Stages of Combination in S.I. Engine, Flame font propagation, factor influencing the flame speed, ignition lag and factors affecting the lag, Abnormal combustion and knocking, control and measurement of knock, rating of S.I. Engine fuels and anti knock agents, combustion chambers of S.I. Engines. Supercharging: Introduction, purpose of supercharging, type of superchargers, analysis of superchargers, performance of superchargers, Arrangement of Supercharger and its installation, Turbo charged engines, supercharging of S.I. & C.I. Engines. Limitations of supercharging. Measurement and Testing: Measurement of friction horse power, brake horse power, indicated horse power, measurement of speed, air consumption, fuel consumption, heat carried by cooling water, heat carried by the exhaust gases, heat balance sheet, governing of I.C. Engines, performance characteristics of I.C. Engines: Performance parameters, performance of S.I. Engines, performance of C.I. Engine, Engine performance maps.	10 Hrs

	1	
CO1	BTME-2316.1	To teach students the operating characteristics and thermodynamic analysis
		of common internal combustion engine cycles.
CO2	BTME-2316.2	To teach students to analyze the combustion process of common fuels
CO3	BTME-2316.3	To make students aware of the roles of fluid flow and heat transfer in engine operation.
C04	BTME-2316.4	To teach students methods to mitigate engine vibration, friction, and wear

- 1. V. Ganesan, Internal Combustion Engines, Prentice Hall.2008
- 2. V. M. Damundwar, A Course in Internal Combustion Engines, Dhanpat Rai. 2006
- 3. John B. Heywood, Internal combustion engine fundamentals McGraw-Hill,2019
- 4. Colin R. Ferguson, Allan Thomson, Kirkpatrick Internal combustion engines: applied thermo sciences, John Wiley & Sons.2008
- 5. Richard Stone, Introduction to Internal Combustion Engines Society of Automotive Engineers,2010

SYLLABUS

SEMESTER-IV

Program Code: ME-301

SUBJECT TITLE: STRENGTH OF MATERIALS-II

SUBJECT CODE: BTME-2401

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	2	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No. 1	Unit –I Strain energy: Introduction to strain energy, energy of dilation and distortion. Resilience, stress due to suddenly applied loads. Castigliano's and Maxwell's theorem of reciprocal deflection. Unit –II Theories of failure: Maximum principal stress theory, maximum shear stress theory, maximum principal strain theory, total strain energy theory, shear strain energy theory. Graphical representation and derivation of equation for these theories and their application to	16 Hrs
2	Unit –III Springs: Open and closed coiled helical springs under the action of axial load and/or couple. Flat spiral springs- derivation of formula for strain energy, maximum stress and rotation. Leaf spring-deflection and bending stresses Unit –IV Thin cylinders and spheres: Calculation of Hoop stress, longitudinal stress in a cylinder, effects of joints, change in diameter, length and internal volume. Principal stresses in sphere, change in diameter and internal volume	16 Hrs
3	Unit –V Thick cylinders: Derivation of Lame's equations, calculation of radial, longitudinal and hoop stresses and strains due to internal pressure in thick cylinders, compound cylinders, hub shrunk on solid shafts, shrinkage allowance and shrinkage stress. Unit –VI Bending of curved beams: Calculation of stresses in cranes or chain hooks, rings of circular and trapezoidal section, and chain links with straight sides	14 Hrs

4	4	Unit -VII Shear stresses in beams: Shear stress distribution in	14 Hrs
		rectangular, circular, I, T and channel section; built up beams. Shear	
		centre and its importance.	
		Unit -VIII Rotational discs: Stresses in rotating discs and rims of	
		uniform thickness; disc of uniform strength.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2401.1	To enhance deep and vigorous understanding of stress analysis in various machine elements
CO2	BTME-2401.2	To analyze and design a mechanical member from the strength point of view under various conditions
CO3	BTME-2401.3	Apply the concept of failure theories for design
C04	BTME-2401.4	Analyze and design thin, thick cylinders and springs

- 1. D.S. Bedi, Strength of materials, Khanna book publishing company. 1998
- 2. G.H. Ryder, Strength of materials, Macmillan India Ltd. 2004
- 3. R.S Lehri and A.S. Lehri, Strength of materials, vol. 2, S. K. Kataria and Sons. 1998
- 4. S.S.Rattan, Strength of materials, Tata McGraw Hills. 2002
- 5. Timoshenko and Gere, Mechanics of materials, CBS publishers. 2013

Program Code: ME-301

SUBJECT TITLE: THEORY OF MACHINES – II

SUBJECT CODE: BTME-2402

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	2	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Unit –I Static force analysis:, Concept of force and couple, free body diagram, condition of equilibrium, static equilibrium of mechanism, methods of static force analysis of simple mechanisms. Power transmission elements, considerations of frictional forces. Unit –II Dynamic force analysis Determination of forces and couples for a crank, inertia of reciprocating parts, dynamically equivalent system, analytical and graphical method, inertia force analysis of basic engine mechanism, torque required to overcome inertia and gravitational force of a four bar linkage.	20 Hrs
2	Unit –III Balancing: Necessity of balancing, static and dynamic balancing, balancing of single and multiple rotating masses, partial unbalanced primary force in an engine, balancing of reciprocating masses, and condition of balance in multi cylinder in line V-engines, concept of direct and reverse crank, balancing of machines, rotors, reversible rotors. Unit –IV Gears: Toothed gears, types of toothed gears and its terminology. Path of contact, arc of contact, conditions for correct gearing, forms of teeth, involutes and its variants, interference and methods of its removal. Calculation of minimum number of teeth on pinion/wheel for involute rack, helical, spiral, bevel and worm gears. Center distance for spiral gears and efficiency of spiral gears	20 Hrs
3	Unit –V Gear Trains: Types of gear trains, simple, compound and epicyclic gear trains, problems involving their applications, estimation of	14 Hrs

	velocity ratio of worm and worm wheel.	
	Unit -VI Gyroscopic motion and couples: Effect on supporting and	
	holding structures of machines. stabilization of ships and planes,	
	Gyroscopic effect on two and four wheeled vehicles and stone crusher.	
4	Unit -VII Kinematic synthesis of Mechanism: Freudenstien equation,	6 Hrs
	Function generation errors insynthesis, two and three point synthesis,	
	Transmission angles, least square techniques.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2402.1	To understand the basic concepts of inertia forces & couples applied to reciprocating parts of a machine
CO2	BTME-2402.2	To understand balancing of masses and design of gears & gear trains.
CO3	BTME-2402.3	To gain knowledge of kinematic synthesis and different applications of gyroscopic effect
C04	BTME-2402.4	Analyze the stability of automobile, naval ship and other related devices considering gyroscopic effect

- 1. S.S. Rattan, Theory of Machines, Tata Mc. Graw Hill. 2010
- 2. John, Gordon, and Joseph, Theory of Machines and Mechanisms, Oxford University Press. 2010
- 3. Hams Crone and Roggers, Theory of Machines. 2008
- 4. Shigley, Theory of Machines, McGraw Hill. 2006
- 5. V.P. Singh, Theory of Machines, DhanpatRai and Sons. 2008.

Program Code: ME-301

SUBJECT TITLE: FLUID MECHANICS

SUBJECT CODE: BTME-2403

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	2	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Unit –I Fundamentals of Fluid Mechanics: Introduction; Applications; Concept of fluid; Difference between solids, liquids and gases; Concept of continuum; Ideal and real fluids; Fluid properties: density, specific volume, specific weight, specific gravity, viscosity (dynamic and kinematic), vapour pressure, compressibility, bulk modulus, Mach number, surface tension and capillarity; Newtonian and non-Newtonian fluids. Unit –II Fluid Statics: Concept of static fluid pressure; Pascal's law and its engineering applications; Hydrostatic paradox; Action of fluid pressure on a plane submerged surface (horizontal, vertical and inclined): resultant force and centre of pressure; Force on a curved surface due to hydrostatic pressure; Buoyancy and flotation; Stability of floating and submerged bodies; Metacentric height and its determination; Periodic time of oscillation; Pressure distribution in a liquid subjected to: (i) constant acceleration along horizontal, vertical and inclined direction (linear motion), (ii) constant rotation.	16 Hrs
2	Unit –III Fluid Kinematics: Classification of fluid flows; Lagrangian and Euler flow descriptions; Velocity and acceleration of fluid particle; Local and convective acceleration; Normal and tangential acceleration; Path line, streak line, streamline and timelines; Flow rate and discharge mean velocity; One dimensional continuity equation; Continuity equation in Cartesian (x,y,z) , polar (r,θ) and cylindrical (r,θ,z) coordinates; Derivation of continuity equation using the Lagrangian method in Cartesian coordinates; Rotational flows: rotation, vorticity and circulation; Stream function and velocity potential function, and	20 Hrs

	relationship between them; Flow net.	
	Unit –IV Fluid Dynamics: Derivation of Euler's equation of motion in	
	Cartesian coordinates, and along a streamline; Derivation of Bernoulli's	
	equation (using principle of conservation of energy and equation of	
	motion) and its applications to steady state ideal and real fluid flows;	
	Representation of energy changes in fluid system (hydraulic and energy	
	gradient lines); Impulse momentum equation; Kinetic energy and	
	momentum correction factors; Flow along a curved streamline; Free and	
	forced vortex motions.	
3	Unit -V Dimensional Analysis and Similitude: Need of dimensional	18 Hrs
	analysis; Fundamental and derived units; Dimensions and dimensional	10 111 5
	homogeneity; Rayleigh's and Buckingham's π - method for dimensional	
	analysis; Dimensionless numbers (Reynolds, Froudes, Euler, Mach, and	
	Weber) and their significance; Need of similitude; Geometric, kinematic	
	and dynamic similarity; Model and prototype studies; Similarity model	
	laws.	
	Unit -VI Internal Flows: Laminar and Turbulent Flows: Reynolds	
	number, critical velocity, critical Reynolds number, hydraulic diameter,	
	flow regimes; Hagen – Poiseuille equation; Darcy equation; Head losses	
	in pipes and pipe fittings; Flow through pipes in series and parallel;	
	Concept of equivalent pipe; Roughness in pipes, Moody's chart.	
4	Unit -VII Pressure and Flow Measurement: Manometers; Pitot tubes;	6 Hrs
	Various hydraulic coefficients; Orifice meters; Venturi meters; Borda	
	mouthpieces; Notches (rectangular, V and Trapezoidal) and weirs;	
	Rotameters.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2403.1	To develop an understanding of the behavior of fluids at rest or in motion
		and the subsequent effects of the fluids on the boundaries as the mechanical
		engineers has to deal with fluids in various applications
CO2	BTME-2403.2	To develop an ability to apply the Bernoulli equation to solve problems in
		fluid mechanics
CO3	BTME-2403.3	An ability to use potential flow theory to solve problems in fluid mechanics
C04	BTME-2403.4	An ability to perform dimensional analysis for problems in fluid mechanics

- 1. D.S. Kumar, Fluid Mechanics and Fluid Power Engineering, S.K. Kataria and Sons Publishers. 1996
- 2. S.K. Som, G. Biswas and S. Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill. 2004
- 3. C.S.P. Ojha, R. Berndtsson and P.N. Chandramouli, Fluid Mechanics and Machinery, Oxford University Press.2012
- 4. Y.A. Cengel and J.M. Cimbala, Fluid Mechanics Fundamentals and Applications, Tata McGraw Hill. 2012

- 5. B.R. Munson, D.F. Young, T.H. Okiishi and W.W. Huebsch, Fundamentals of Fluid Mechanics, John Wiley and Sons. 2014
- 6. J.F. Douglas and J.M. Gasiorek, J.A. Swaffield and L.B. Jack, Fluid Mechanics, Pearson 2014
- 7. V.L. Streeter, E.B. Wylie and K.W. Bedford, Fluid Mechanics, Tata McGraw Hill 2012

Program Code: ME-301

SUBJECT TITLE: APPLIED THERMODYNAMICS-II

SUBJECT CODE: BTME-2404

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	2	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.No.	Contents	ContactHrs
1	Unit -I Air Compressors- Introduction: Classification of Air	16 Hrs
	Compressors; Application of compressors and use of compressed air in	
	industry and other places; Complete representation of compression process	
	on P-v and T-s coordinates with detailed description of areas representing	
	total work done and polytropic work done; Areas representing energy lost	
	in internal friction, energy carried away by cooling water and additional	
	flow work being done for un-cooled and cooled compression on T-	
	Scoordinates; Best value of index of compression; Isentropic, polytropic	
	and isothermal efficiencies and their representation in terms of ratio of	
	areas representing various energy transfers on T-s coordinates.	
	Unit -II Reciprocating Air Compressors Single stage single acting	
	reciprocating compressor (with and without clearance volume):	
	construction, operation, work input and best value of index of compression,	
	heat rejected to cooling medium, isothermal, overall thermal, isentropic,	
	polytropic, mechanical efficiency, Clearance Volumetric efficiency,	
	Overall volumetric efficiency, effect of various parameters on volumetric	
	efficiency, free air delivery; Multistage compressors: purpose and	
	advantages, construction and operation, work input, heat rejected in	
	intercoolers, minimum work input, optimum pressure ratio; isothermal,	
	overall thermal, isentropic, polytropic and mechanical efficiencies;	
	Performance curves	
2	Unit -III Positive Displacement Rotary Compressors Introduction:	14 Hrs
	Comparison of rotary positive displacement compressors with reciprocating	
	compressors; Classification of rotary compressors; Construction, operation,	
	work input and efficiency of positive displacement type of rotary	
	compressors like Roots blower, Lysholm compressor and Vane type	

	l m.	
	Blower.	
	Unit –IV Thermodynamics of Dynamic Rotary Compressors:	
	Applications of Steady Flow Energy Equation and thermodynamics of	
	dynamic(i.e., centrifugal and axial flow m/cs) compressors; Stagnation and	
	static values of pressure, Temperature and enthalpy etc. for flow through	
	dynamic rotary machines; Complete representation of compression process	
	on T-S coordinates with detailed description of areas representing total	
	work done, polytropic work done; ideal work required for compression	
	process, areas representing energy lost in internal friction, energy carried	
	away by cooling water on TS coordinates for an uncooled and cooled	
	compression; <i>isentropic</i> , <i>polytropic</i> , and <i>isothermal efficiencies</i> as ratios	
	of the areas representing various energy transfers on T-S coordinates	
3	Unit –V Centrifugal Compressors:- Complete thermodynamic analysis of	16 Hrs
3		то птѕ
	centrifugal compressor stage; Polytropic, isentropic and isothermal	
	efficiencies; Complete representation of compression process in the	
	centrifugal compressor starting from ambient air flow through the suction	
	pipe, Impeller, Diffuser and finally to delivery pipe on T-S coordinates;	
	Pre-guide vanes and pre-whirl; Slip factor; Power input factor; Various	
	modes of energy transfer in the impeller and diffuser; Degree of Reaction	
	and its derivation; Energy transfer in backward, forward and radial vanes;	
	Pressure coefficient as a function of slip factor; Efficiency and out-coming	
	velocity profile from the impeller; Derivation of non-dimensional	
	parameters for plotting compressor characteristics; compressor	
	characteristic curves; Surging and choking in centrifugal compressors.	
	Unit -VI Axial Flow Compressors Different components of axial flow	
	compressor and their arrangement; Discussion on flow passages and simple	
	theory of aerofoil blading; Angle of attack; coefficients of lift and drag;	
	Turbine versus compressor blades; Velocity vector; Vector diagrams;	
	Thermodynamic analysis; Work done on the compressor and power	
	calculations; Modes of energy transfer in rotor and stator blade flow	
	passages; Detailed discussion on work done factor, degree of reaction,	
	blade efficiency and their derivations; <i>Isentropic</i> , <i>polytropic</i> and	
	isothermal efficiencies; Surging, Choking and Stalling in axial flow	
	compressors; Characteristic curves for axial flow compressor; flow	
	parameters of axial flow compressor like Pressure Coefficient, Flow	
	Coefficient, Work Coefficient, Temperature-rise Coefficient and Specific	
	Speed; Comparison of axial flow compressor with centrifugal compressor	
	and reaction turbine; Field of application of axial flow compressors.	
4	Unit -VII Gas Turbines Classification and comparison of the Open and	14 Hrs
	Closed cycles; Classification on the basis of combustion (at <i>constant</i>	
	volume or constant pressure); Comparison of gas turbine with a steam	
	turbine and IC engine; Fields of application of gas turbines; Position of gas	
	turbine in power industry; Thermodynamics of constant pressure gas	
	turbine cycle (Brayton cycle); Calculation of net output, work ratio and	
	thermal efficiency of ideal and actual cycles; Cycle air rate, temperature	
	ratio; Effect of changes in specific heat and that of mass of fuel on power	
L	, <u>6</u> 1	

and efficiency; Operating variables and their effects on thermal efficiency and work ratio; Thermal refinements like regeneration, inter-cooling and re-heating and their different combinations in the gas turbine cycle and their effects on gas turbine cycle i.e. gas turbine cycle. Multistage compression and expansion; Dual Turbine system; Series and parallel arrangements; Closed and Semi-closed gas turbine cycle; Requirements of a gas turbine combustion chamber; Blade materials and selection criteria for these materials and requirements of blade materials; Gas turbine fuels. Unit -VIII Jet Propulsion Principle of jet propulsion; Description of different types of jet propulsion systems like rockets and thermal jet engines, like (i) Athodyds (ramjet and pulsejet), (ii) Turbojet engine, and (iii) Turboprop engine. Thermodynamics of turbojet engine components; Development of thrust and methods for its boosting/augmentation; Thrust work and thrust power; Propulsion energy, Propulsion and thermal (internal) efficiencies; Overall thermal efficiency; Specific fuel c consumption; Rocket propulsion, its thrust and thrust power; Propulsion and overall thermal efficiency; Types of rocket motors (e.g. solid propellant and liquid propellant systems); Various common propellant combinations (i.e. fuels) used in rocket motors; Cooling of rockets; Advantages and disadvantages of jet propulsion over other propulsion systems; Brief introduction to performance characteristics of different propulsion systems; Fields of application of various propulsion units.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2404.1	For providing comprehensive understanding and thermodynamic analysis of positive displacement air compressors and thermal turbo machines used in power generation, aircraft, spacecraft and rocket propulsion.
CO2	BTME-2404.2	Able to understand the thermodynamic working as well as performance of thermal turbo power machinery
CO3	BTME-2404.3	Analyze and understand the various types of compressor along with their practical applications
C04	BTME-2404.4	Discuss about the working of different types of turbines along their jet propulsion

- 1. R. Yadav, Sanjay and Rajay, Applied Thermodynamics, Central Publishing House. 1998
- 2. J.S. Rajadurai, Thermodynamics and Thermal Engineering New Age International (P) Ltd. Publishers.
- 3. D.S. Kumar and V.P. Vasandani, Heat Engineering, Metropolitan Book Co. Pvt. Ltd. 2002
- 4. K. Soman, Thermal Engineering, PHI Learning Pvt. Ltd. 2004
- 5. G. Rogers and Y. Mayhew, Engineering Thermodynamics, Pearson. 2010
- 6. D.G. Shephered, Principles of Turbo machinery Macmillan. 2012
- 7. H. Cohen, G.F.C. Rogers and M. Sarvan, Gas Turbine Theory, Longmans. 2008

Program Code: ME-301

SUBJECT TITLE: MANUFACTURING PROCESSES-II

SUBJECT CODE: BTME-2405

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Unit –I Metal Forming: Introduction and classification. Rolling process: introduction, classification, rolling mills, products of rolling, rolling defects and remedies. Forging: open and closed die forging, forging operations, hammer forging, press forging and drop forging, forging defects, their causes and remedies. Extrusion: classification, equipment, defects and remedies. Drawing: drawing of rods, wires and tubes, draw benches, drawing defects and remedies. Sheet metal forming operations: piercing, blanking, embossing, squeezing, coining, bending, drawing and deep drawing, and spinning. Punch and die set up. Press working: press types, operations, press tools, progressive and combination dies. Process variables and numerical problems related to load calculation in Rolling, Forging, Extrusion, Drawing and Sheet metal forming. High velocity forming of metals: introduction, electro-hydraulic forming, mechanical high velocity forming, magnetic pulse forming and explosive forming. Powder Metallurgy: Introduction, advantages, limitations, and applications methods of producing metal powders, briquetting and sintering.	15 Hrs
2	Unit-II Metal Cutting: Introduction to machining processes, classification, Mechanics of chip formation process, concept of shear angle, chip contraction and cutting forces in metal cutting, Merchant theory, tool wear, tool life, machinability. Numerical problems based on above mentioned topics, Fundamentals of measurement of cutting forces and chip tool interface temperature. Cutting tools: types, geometry of single point	15 Hrs

	cutting tool, twist drill and milling cutter, tool signature. Cutting tool materials: high carbon steels, alloy carbon steels, high speed steel, cast alloys, cemented carbides, ceramics and diamonds, and CBN. Selection of machining parameters. Coolants and lubricants: classification, purpose, function and properties.	
3	Unit III Machine Tools Lathe: classification, description and operations, kinematic scheme of lathe, and lathe attachments. Shaping and planing machine: classification, description and operations, drive mechanisms. Milling machine: classification, description and operations, indexing devices, up milling and down milling. Drilling machine: classification, description and operations. Boring machine: classification, description and operations. Grinding machines: classification, description and operations, wheel selection, grinding wheel composition and nomenclature of grinding wheels, dressing and truing of grinding wheels. Broaching machine: classification, description and operations. Speed, feed and machining time calculations of all the above machines.	15 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-2405.1	Students will be able to Explain machining processes and cutting action involved
CO2	BTME-2405.2	Calculate / estimate machining parameters
CO3	BTME-2405.3	Differentiate among various machining processes
C04	BTME-2405.4	Select appropriate machining operation for particular application

- 1. B. L. Juneja and G. S. Sekhon, Fundamentals of Metal Cutting & Machine Tools, New Age International (P) Ltd. 2008
- 2. H.S. Shan, Manufacturing Processes, Vol. I&II, Pearson Publishers. 2002
- 3. PC Sharma, A Text Book of Production Technology, S. Chand & Company Ltd. 1998
- 4. M. P. Groover, Fundamentals of Modern manufacturing, Wiley 2010
- 5. SeropeKalpakjian and Steven R. Schmid, Manufacturing Engineering and Technology, Pearson Publishers. 2014

Program Code: ME-301

SUBJECT TITLE: THEORY OF MACHINES LAB

SUBJECT CODE: BMTE-2406

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	To draw displacement, velocity & acceleration diagram of slider - crank	2 Hrs
	and four bar mechanism.	
2	To study the various inversions of kinematic chains.	2 Hrs
3	Conduct experiments on various types of governors and draw graphs	2 Hrs
	between height and equilibrium speed of a governor.	
4	Determination of gyroscopic couple (graphical method).	2 Hrs
5	Balancing of rotating masses (graphical method).	2 Hrs
6	Cam profile analysis (graphical method)	2 Hrs
7	Determination of gear- train value of compound gear trains and epicyclic	2 Hrs
	gear trains.	
8	To draw circumferential and axial pressure profile in a full journal	2 Hrs
	bearing.	
9	To determine coefficient of friction for a belt-pulley material	2 Hrs
	combination.	
10	Determination of moment of inertia of flywheel.	2 Hrs

CO1	BTME-2406.1	Analyze and draw the velocity, displacement and acceleration diagrams of
		various inversions of machines
CO2	BTME-2406.2	To discuss about the working of different types of governors along with
		their graphical representation
CO3	BTME-2406.3	Graphically represent the working profile of gyroscope, rotating masses and
		cam profile
C04	BTME-2406.4	Analyze the gear ratio of compound and epicyclic gear trains

Program Code: ME-301

SUBJECT TITLE: FLUID MECHANICS LAB

SUBJECT CODE: BMTE-2407

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	To determine the metacentric height of a floating vessel under loaded and	2 Hrs
	unloaded conditions.	
2	To study the flow through a variable area duct and verify Bernoulli's	2 Hrs
	energy equation.	
3	To determine the coefficient of discharge for an obstruction flow meter	2 Hrs
	(venture meter/ orifice meter)	
4	To determine the discharge coefficient for a V- notch or rectangular	2 Hrs
	notch.	
5	To study the transition from laminar to turbulent flow and to ascertain the	2 Hrs
	lower critical Reynolds number.	
6	To determine the hydraulic coefficients for flow through an orifice.	2 Hrs
7	To determine the friction coefficients for pipes of different diameters.	2 Hrs
8	To determine the head loss in a pipe line due to sudden expansion/	2 Hrs
	sudden contraction/ bend.	
9	To determine the velocity distribution for pipeline flow with a pitot static	2 Hrs
	probe.	

CO1	BTME-2407.1	To determine the fluid flow and metacentric heights of fluid flow through
		the vessel
CO2	BTME-2407.2	To evaluate the co-efficient of discharge for the fluid flows through notch
CO3	BTME-2407.3	To evaluate the hydraulic co-efficient and friction co-efficien5t flowing
		through the orifice
C04	BTME-2407.4	To discuss the velocity distribution of fluid flow pipe lines

Program Code: ME-301

SUBJECT TITLE: MANUFACTURING PROCESSES LAB

SUBJECT CODE: BMTE-2408

SEMESTER: 4

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Welding:	2 Hrs
	To make lap joint, butt joint and T- joints with oxy- acetylene gas	
	welding and manual arc welding processes	
2	Welding:	2 Hrs
	To study MIG, TIG and Spot welding equipment and make weld joints	
	by these processes	
3	Machining and Forming: To study constructional features of following	4 Hrs
	machines through drawings/ sketches:	
	a. Grinding machines (Surface, Cylindrical)	
	b. Hydraulic Press	
	c. Draw Bench	
	d. Drawing and Extrusion Dies	
	e. Rolling Mills	
4	Machining and Forming: To grind single point and multipoint cutting	2 Hrs
	tools	
5	Machining and Forming: To prepare job on Lathe involving specified	2 Hrs
	tolerances; cutting of V- threads and square threads.	
6	Machining and Forming: To prepare job on shaper involving plane	2 Hrs
	surface,	
7	Machining and Forming: Use of milling machines for generation of	2 Hrs
	plane surfaces, spur gears and helical gears; use of end mill cutters.	
8	Machining and Forming: To determine cutting forces with	2 Hrs
	dynamometer for turning, drilling and milling operations	

CO1	BTME-2408.1	Discuss the basic of welding processes along with their practical
		applications
CO2	BTME-2408.2	Analyze the working principles of machining and forming operations
CO3	BTME-2408.3	Prepare a job in lathe machine and milling machine
C04	BTME-2408.4	Evaluate the cutting forces with the help of dynamometer for different
		machining operations

Program Code: ME-301

SYLLABUS

SEMESTER-V

Program Code: ME-301

SUBJECT TITLE: MATHEMATICS-III

SUBJECT CODE: BTME-3500

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	2	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact
No.		Hrs
1	UNIT-1 Fourier Series Periodic functions, Euler's formula. Even and odd	22 Hrs
	functions, Change of Interval, half range expansions, Fourier series of different wave forms.	
	UNIT-2 Laplace Transforms: Definition, Laplace transforms of various standard functions, properties of Laplace transforms, inverse Laplace transforms, transform of derivatives and integrals, Transform of	
	multiplication and division by t, convolution theorem, Laplace transform of unit step function. Applications to solution of ordinary linear differential	
	equations with constant coefficients.	
2	UNIT-3 Special Functions: Frobenius method for power series solution of	8 Hrs
	differential equations, Bessel's equation, Bessel functions of the first and	
	second kind, Legendre's equation, Legendre polynomial.	
3	UNIT-4 Partial Differential Equations: Formation of partial differential equations, Equations solvable by direct integration, Linear partial differential equations, homogeneous partial differential equations with constant coefficients. Solution by method of separation of variables, Applications: Wave equation and Heat conduction equation in one dimension. Solution of two dimensional Laplace equation (Cartesian coordinates).	14 Hrs
4	UNIT-5 Functions of Complex Variable: definition of Limit, continuity, derivative of complex functions, and analytic function. Necessary and	16 Hrs

sufficient conditions for analytic function (without proof), Cauchy-Riemann equation (Cartesian and polar co-ordinates), harmonic functions, orthogonal system, determination of conjugate functions. Miller's Thosmson method, Applications to fluid flow problems. Brief introduction to basic transformations, Bilinear transformations, complex integration: Line integrals in the complex plane, Cauchy's integral theorem, Cauchy's integral formula for analytic function and its derivatives. Taylor's and Laurent's expansions, singular points, poles, residue, Cauchy's Residue theorem, evaluation of real integrals by contour integration (F(cosx, sinx))

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3500.1	Students will be able to comprehensive understanding of Fourier series,
		Laplace transforms and various mathematical functions in engineering
		analysis
CO2	BTME-3500.2	To make students able to select various Engineering models for
		optimization and implementation with aforesaid applications
CO3	BTME-3500.3	To implement the various Mathematic equation for evaluating the results
C04	BTME-3500.4	To understand the function of Partial differential equation and complex
		variables

- 1. Kreyszing Erwin, Advanced Engineering Mathematics, Wiley Eastern, 2014
- 2. B.S Grewal, Higher Engineering Mathematics, Khanna Publishers, 2002
- 3. N.K Jain, Numerical Solutions of Differential Equations, Prentice Hall, 2006
- 4. Sharma and Gupta, Differential Equations, Krishna Prakashan Media, 2008
- 5. N.P Bali, Text book of Eng Mathematics, Laxmi Publishers, 2000

Program Code: ME-301

SUBJECT TITLE: DESIGN OF MACHINE ELEMENT-I

SUBJECT CODE: BTME-3501

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	2	0	5

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Meaning of design with special reference to machine design, definition and understanding of various types of design, design process, design and creativity, general design considerations, concept of tearing, bearing, shearing, crushing, bending and fracture. Designation of materials according to Indian standards code, basic criteria	12 Hrs
	of selection of material, mechanical properties of materials	
2	Concept of concurrent engineering in design, introduction to 'Design for X' manufacturing considerations in machine design, stress concentration, factor of safety under different loading conditions, design for static loading, design for variable loading for both limited and unlimited life, concept of fatigue and endurance strength. Design of fasteners: Design of rivets for boiler joints, lozenge joints, eccentrically loaded joints. Design of spigot and socket cotter joint, gib and cotter joint and knuckle joint. Design of welded joints for various loading conditions in torsion, shear or direct loads, eccentrically loaded joints	22 Hrs
3	Design of shaft and axles:	16 Hrs
	Design of solid and hollow shafts for transmission of torque, bending	
	moments and axial forces, Design of shaft for rigidity, Design of axle.	
	Design of keys and couplings:	
	Design of keys, design of splines, design of sleeve and solid muff coupling,	
	clamp or compression coupling, rigid and flexible flange coupling, design of	

	universal joint.	
4	Design of levers and links:	18 Hrs
	Design of levers(foot lever, hand lever, cranked lever, bell crank lever,	
safety valve lever and shoe brake lever), design of link		
	Design of pipe joints:	
	Stresses in pipe joints, design of pipe joints with oval flange, square flange,	
	design of seals and gaskets.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3501.1	To design the required size of shaft, key and coupling for the given application
CO2	BTME-3501.2	To identify various failures and calculate resisting areas of machine elements
CO3	BTME-3501.3	To design machine element subjected to direct, bending, twisting and combined stress
C04	BTME-3501.4	To implement the Mathematics formulas and thereafter design the various Mechanical elements

- 1. Joseph E. Shigley, Charles Russell Mischke, Richard Gordon Budynas, Mechanical Engineering Design, McGraw-Hill, 2006
- 2. Robert C. Juvinall Fundamentals of machine component design, Wiley 2008
- 3. V.K Jadon, Analysis and design of machine elements, I.K. International, 2010
- 4. V.B Bhandari, Design of Machine elements, Tata Mc. Hill, 2006
- 5. S.S Jolly, Design of machine elements-I, DhanpatRai and Co., 2012

SUBJECT TITLE: COMPUTER AIDED DESIGN AND MANUFACTURING

SUBJECT CODE: BTME-3502

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Fundamentals of CAD:	18 Hrs
	Design process with and without computer; CAD/CAM system and its evaluation criteria, brief treatment of input and output devices, Display devices; Functions of a graphics package and Graphics standard GKS, IGES and STEP; Modeling and viewing; Application areas of CAD. Geometric	
	Transformations:	
	Mathematics preliminaries, matrix representation of 2 and 3 dimensional Concatenation of transformation matrices. Application of geometric transformations. Geometric Modeling:	
	Wireframe model: solid modeling: Boundary Representation (B-rep),	
	Constructive Solid Geometry (CSG), Parametric Modeling Technique; Mass, volumetric properties calculations; surface modeling, concepts of hiddenline removal and shading: Mechanical Assembly Kinematics analysis and simulation.	
2	Representation of curves and surfaces: Non-parametric and parametric	12 Hrs
2	representation of curves. Parametric representation of Hermite Cubic, Beizer and B-spline curves; Surface and its analysis. Representation of Analytical and synthetic surfaces.	121113
	Overview of FEM, Advantages and applications, recent advance in FEM,	
	FEA software Basic principles and general procedure of FEM.	
3	NC/CNC Machine Tools:	6 Hrs
	NC machine tools- basic components, coordinate systems; features of NC machine tools. Computerized Numerical Control (CNC): Tooling for NC	

	machines - tool presetting equipment, flexible tooling, tool length compensation, tool path graphics; NC motion control system; Manual part programming, fixed/floating zero. Block format and codes: Computer assisted part programming. DNC and Adaptive Control: Direct numerical control: Adaptive control in machining system; Combined DNC/CNC system.	
4	Group Technology (GT): Part families; part classification and coding	9 Hrs
	system, Group technology, machine cells, Advantages of GT.	
	Computer Aided Process Planning: Introduction and benefits of CAPP.	
	Types of CAPP systems, machinability, data selection systems in CAPP.	
	Computer Integrated Manufacturing Systems: Basic Concepts of CIM:	
	CIM Definition, The meaning of Manufacturing, Types of Manufacturing	
	systems; Need, Elements, Evolution of CIM; Benefits of CIM; Flexible	
	Manufacturing Systems: Physical Components of an FMS. Types of	
	Flexibility, Layout Considerations; FMS benefits.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3502.1	To understand the concept of Graphic systems and standards and its
		interfacing for various geometric transformations in design engineering
CO2	BTME-3502.2	To understand various types of design processes for its transformation into
		wireframe models
CO3	BTME-3502.3	To gain knowledge of Parametric Modeling Techniques and different
		applications in Mechanical engineering
C04	BTME-3502.4	To understand and analyze the various processes such as group technology,
		computer aided process planning and computer integrated manufacturing
		systems

- 1. Mikell P. Groover, Emory W. Zimmers, CAD/CAM, PHI, 2002
- 2. D.D. Bedworth, M.R Henderson & P.M. Wolfe, Computer Integrated Design and Manufacturing, Tata McGraw Hill,2008
- 3. ZeidIbraham, CAD/CAM theory and Practice, Tata McGraw Hill,1998
- 4. P. N Rao, CAD/CAM, Tata McGraw Hill, 2004
- 5. C. Elanchezhian, G. ShanmugaSundar, Computer aided manufacturing (CAM), Firewall Media,2010

SUBJECT TITLE: MECHANCIAL MEASUREMENTS AND METROLOGY

SUBJECT CODE: BTME-3503

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	General Concepts Need and classification of measurements and instruments; basic and auxiliary functional elements of a measurement system; Mechanical versus electrical / electronic instruments; primary, secondary and working standards. Static and Dynamic Characteristics of Instruments Range and span, accuracy and precision, calibration, hysteresis and dead zone, sensitivity and linearity, threshold and resolution; speed of response, lag, fidelity and dynamic error, dead time and dead zone. Zero, first and second order systems and their response to step, ramp and sinusoidal input	10 Hrs
3	Errors in Measurement Sources of errors, systematic and random errors; statistical analysis of test-data, probable error and probability tables, rejection of test data, error propagation; Design and planning of experiments and report writing. Metrology Line, end and wavelength standards; linear measurements - vernier scale and micrometer, vernier height gauge and depth gauge; comparators - their types, relative merits and limitations; Angular measurements - sine bar, clinometer, angle gauge; concept and measurement of straightness and flatness by interferometry; surface roughness - specifications and measurement, Measurement of major diameter, minor diameter, effective diameter, pitch, angle and form of threads for internal and external threads;	16 Hrs

	measurement of tooth thickness, pitch and checking of profile for spur				
	gears.				
5	Functional Elements	13 Hrs			
	Introduction to sensors and transducers, types of sensors, review of electro-				
	mechanical sensors and transducers - variable resistance, inductance and				
	capacitive pick ups, photo cells and piezo-electric transducers and				
	application of these elements for measurement of position / displacement,				
	speed / velocity / acceleration, force and liquid level. Resistance strain				
	gauges, gauge factor, bonded and unbounded gauges, surface preparation				
	and bonding technique signal conditioning and bridge circuits, temperature				
	compensation, application of strain gauges for direct, bending and torsional				
	loads. Introduction to amplifying, transmitting and recording devices.				
	Pressure and Flow Measurement				
	Bourdon tube, diaphragm and bellows, vacuum measurement - Mcleod				
	gauge, thermal conductivity gauge and ionization gauge; Dead weight				
	gauge tester. Electromagnetic flux meters, ultra-sonic flow meters and hot				
	wire anemometer: flow visualization techniques				
7	Temperature Measurement	10 Hrs			
/	Thermal expansion methods - bimetallic thermometers, liquid-in-glass	10 111 8			
	thermeter and filled-in-system thermometers; thermo-electric sensors -				
	common thermo couples, reference junction considerations, special				
	materials and configurations; metal resistance thermometers and				
	thermistors; optical and total radiation pyrometers; calibration standards.				
	Speed, Force, Torque and Shaft Power Measurement				
	Mechanical tachometers, vibration reed tachometer and stroboscope;				
	proving ring, hydraulic and pneumatic load cells, torque on rotating shafts;				
	Absorption, transmission and driving dynamo meters.				

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3503.1	To describe basic concepts of mechanical measurement, errors in	
		measurements and uncertainty	
CO2	BTME-3503.2	To identify the type of measurement instruments and their relevant	
		specification etc. which can be used in a particular process parameter	
		measurement selection?	
CO3	BTME-3503.3	To explain the theory of stress & strain, force and torque measurements	
C04	BTME-3503.4	To measure the speed, force, torque and shaft pressure of various measuring	
		components	

- 1. E.O Doebelin, Measurement System: Application and Design, McGraw Hill, 2012
- 2. J.P Holman, Experimental Methods for Engineers, McGraw Hill,2013
- 3. D.S Kumar, Mechanical Measurement and Control, Metropolitan Book Co.,2000
- 4. R.K Jain, Engineering Metrology, Khanna Publishers, 1998
- 5. B.C Kuo, Automatic Control systems, Prentice Hall, 2006

Program Code: ME-301

SUBJECT TITLE: AUTOMOBILE ENGINEERING

SUBJECT CODE: BTME-3504

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction	13 Hrs
	Basic structure, general layout and type of automotive vehicles, Frameless and unitary construction; position of power unit	10 1110
	Power Unit	
	Power requirements - motion resistance and power loss, tractive effort and vehicle performance curves; selection of power unit and engine performance characteristics; pollution due to vehicle emission and exhaust emission control system, silencers, types of pistons and rings	
	Fuel Supply System	
	Air cleaner and fuel pumps; Air fuel requirements and carburation; constructional details of Carter carburetors and fuel injection systems; MPFi (Petrol), Diesel fuel system - cleaning, injection pump, injector and nozzles, Common Rail fuel supply system	
2	Lubrication and Cooling Systems	12 Hrs
	Necessity of lubrication; Desirable properties of lubricants; various types of	
	lubricants and oil additives; different systems of lubrication - oil filters, oil	
	pumps and oil pressure indicator; crank case ventilation and dilution. Purpose	
	of cooling, air and water cooling systems; radiator, thermostat, pump and fan Chassis and Suspension	
	Loads on the frame, considerations of strength and stiffness, engine mounting, independent suspension systems (Mac Pherson, Trailing Links, Wishbone), shock absorbers and stabilizers; wheels and tyres, tyre wear types, constructional details of plies	

3	Transmission system	14 Hrs			
	Basic requirements and standard transmission systems; constructional				
	features of automobile clutch, gear box, differential, front and rear axles;				
	overdrives, propeller shaft, universal joint and torque tube drive; Rear wheel				
	vs front wheel drive, principle of automatic transmission				
	Steering System				
	Requirement and steering geometry; castor action, camber and king pin				
	angle, toe-in of front wheels, steering linkages and steering gears; wheel				
	alignment; power steering, Ball re-circulating mechanism				
	Braking System				
	General braking requirements; Mechanical, hydraulic, vacuum power and				
	servo brakes; Weight transfer during braking and stopping distances				
4	Electric System	6 Hrs			
	Classification, Introduction to Conventional and transistorized ignition				
	systems; Charging, capacity ratings and battery testing; starter motor and				
	drive arrangements: voltage and current regulation				
	Maintenance				
	Preventive maintenance, trouble shooting and rectification in different				
	systems; engine tuning and servicing, major tools used for maintenance of				
	automobiles				

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3504.1	To understand the basic layout of an automobile	
CO2	BTME-3504.2	Understand the operation of engine cooling, lubrication, ignition, electrical	
		and air conditioning systems	
CO3	BTME-3504.3	Analyze the vehicle transmission, suspension, steering and braking systems	
C04	BTME-3504.4	Understand automotive electronics and explore latest developments in	
		automobiles	

- 1. W.H Crouse, Automotive mechanics, McGraw Hill,2008
- 2. J. Heitner, Automotive Mechanics, East West Press, 2010
- 3. Kirpal Singh, Automobile Engineering Vol. I and II, Standard Publishers, 2001
- 4. J. Webster, Auto Mechanics, Glencoe Publishing Co.,2004
- 5. P.S Gill, Automobile Engineering, S.K Kataria, 2004

Program Code: ME-301

SUBJECT TITLE: INDUSTRIAL AUTOMATION AND ROBOTICS

SUBJECT CODE: BTME-3505

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1		
2	Basic hydraulic and pneumatic circuits: Direct and Indirect Control of Single/Double Acting Cylinders, Designing of logic circuits for a given time displacement diagram & sequence of operations, Hydraulic & Pneumatic Circuits using Time Delay Valve & Quick Exhaust Valve Memory Circuit & Speed Control of a Cylinder. Troubleshooting and "Causes & Effects of Malfunctions". Basics of Control Chain Circuit Layouts. Designation of specific Elements in a Circuit	8 Hrs
3	Fluidics: Boolean algebra, Truth Tables, Logic Gates, Coanda effect Electrical and Electronic Controls Basics of Programmable logic controllers (PLC), Architecture & Components of PLC, Ladder Logic Diagrams	10 Hrs
4	Transfer Devices and feeders:	11 Hrs

Classification, Constructional details and Applications of Transfer devices,	
Vibratory bowl feeders, Reciprocating tube, Centrifugal hopper feeders	
Robotics Introduction:	
Classification based on geometry, control and path movement, Robot	
Specifications, Robot Performance Parameters Robot Programming, Machine	
Vision, Teach pendants, Industrial Applications of Robots	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3505.1	To understand the need and concept of Automation in Conventional
		Mechanical System
CO2	BTME-3505.2	To understand various types of Basic hydraulic and pneumatic circuits
		systems
CO3	BTME-3505.3	To gain knowledge of Electrical and Electronic Controls and Industrial
		Applications of Robots
C04	BTME-3505.4	Analyze and understand the various transfer devices and feeders

- 1. Anthony Esposito, Fluid Power with applications, Pearson, 2008
- 2. S. R Majumdar, Pneumatic Control, McGraw Hill, 2006
- 3. S. R Deb, Robotic Technology and Flexible Automation, Tata Mc Hill,2012
- 4. Saeed B. Niku Introduction to Robotics, Wiley India, 2014
- 5. AshitavaGhosal, Robotics, Oxford,2006

Program Code: ME-301

SUBJECT TITLE: COMPUTER AIDED DESIGN AND MANUFACTURING LAB

SUBJECT CODE: BMTE-3506

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

Contents of Syllabus

S.	Contents	Contact Hrs
No.		
1	Introduction to modeling (using any CAD software):	16Hrs
	2D drawing using sketcher – 2 Drawings	
	3D modeling using 3D features (Modeling of Crane Hook, Bench	
	Vice, Screw Jack components)	
	Assembling and drafting (any 2 above mentioned assemblies) with proper	
	mating conditions and interference checking. Surface modeling –	
	(Computer mouse, Plastic bottles with spraying Nozzle)	
2	Computer Aided Manufacturing:	8 Hrs
	Manual part programming on CNC Lathe and CNC Milling – (4	
	programs, 2 for each)	
	Computer Aided Part programming for CNC Lathe and CNC Milling to	
	generate tool path, NC code, and Optimization of tool path (to reduce	
	machining time) using any CAM software.	

CO1	BTME-3506.1	To understand the basics of working with Auto CAD, also to be familiar
		with various 2D commands
CO2	BTME-3506.2	Analyze and draw a 2D and 3D models of various Mechanical Components
CO3	BTME-3506.3	To understand the basics of part programming and CNC lathe and CNC
		milling machine

Program Code: ME-301

C04 Analyze and draw a 2D and 3D models of various Mechanical Components BTME-3506.4

- Suggested Readings / Books:

 1. CAD/CAM by Groover and Zimmer, Prentice Hall, 2005.
- 2. CAD/CAM: Theory and Practice by I. Zeid, McGraw Hill, 2004.
- 3. Geometric Modeling by M.E. Mortenson, 2001.

Program Code: ME-301

SUBJECT TITLE: MECHANICAL MEASUREMENTS AND METROLOGY LAB

SUBJECT CODE: BMTE-3507

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Measurement of an angle with the help of sine bar	2 Hrs
2	Measurement of surface roughness of a machined Plate, Rod and Pipe	2 Hrs
3	Measurement of gear elements using profile projector	2 Hrs
4	Measurement of effective diameter of external threads using Three wire	2 Hrs
	method	
5	Measurement of thread element by Tool makers microscope	2 Hrs
6	Calibration of a pressure gauge with the help of a dead weight gauge	2 Hrs
	tester	
7	Use of stroboscope for measurement of speed of shaft	2 Hrs
8	Use of pitot tube to plot velocity profile of a fluid through a circular duct	2 Hrs
9	Preparation of a thermocouple, its calibration and application for	2 Hrs
	temperature measurement	

CO1	BTME-3507.1	Use of various measuring instruments as per their practical applications	
CO2	BTME-3507.2	To measure the angle, surface roughness, gear profile and effective of	
		various machined elements	
CO3	BTME-3507.3	To measure the pressure and speed as per the practical approach	
C04	BTME-3507.4	To analyze and measure the temperature using thermocouples	

Program Code: ME-301

SUBJECT TITLE: AUTOMOBILE ENGINEERING LAB

SUBJECT CODE: BMTE-3508

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Valve refacing and valve seat grinding and checking for leakage of valves	2 Hrs
2	Trouble shooting in cooling system of an automotive vehicle	2 Hrs
3	Trouble shooting in the ignition system, setting of contact breaker points and spark plug gap	2 Hrs
4	Demonstration of steering system and measurement of steering geometry angles and their impact on vehicle performance.	2 Hrs
5	Demonstration of Various Transmission System of an automotive vehicle.	2 Hrs
6	Trouble shooting in braking system with specific reference to master cylinder, brake shoes, overhauling of system and the adjusting of the system and its testing.	2 Hrs
7	Fault diagnosis in transmission system including clutches, gear box assembly and differential.	2 Hrs
8	Replacing of ring and studying the method of replacing piston and piston rings	2 Hrs

CO1	BTME-3508.1	To understand the basic layout of valve mechanism used in engine block
		assembly
CO2	BTME-3508.2	To analyze the trouble shooting of ignition system and cooling system in
		automobile engine
CO3	BTME-3508.3	To understand the various transmission systems of an automobile vehicle
C04	BTME-3508.4	To diagnose the faults in transmission system including clutches, gear box
		assembly, etc.

Program Code: ME-301

SUBJECT TITLE: INDUSTRIAL AUTOMATION AND ROBOTICS LAB

SUBJECT CODE: BMTE-3509

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Design and assembly of hydraulic / pneumatic circuit.	2 Hrs
2	Demonstration and working of power steering mechanism	2 Hrs
3	Study of reciprocating movement of double acting cylinder using	2 Hrs
	pneumatic direction control valves	
4	Use of direction control valve and pressure control valves clamping	2 Hrs
	devices for jig and fixture	
5	Study of robotic arm and its configuration	2 Hrs
6	Study the robotic end effectors	2 Hrs
7	Study of different types of hydraulic and pneumatic valves	2 Hrs

CO1	BTME-3509.1	Analyze and design of basic circuits used in automation industry
CO2	BTME-3509.2	Demonstrate the working of power steering along with control valves
CO3	BTME-3509.3	Use of control valves and clamping devices for jig and fixtures
C04	BTME-3509.4	Study and analyze the working of robotic arm and robot end effectors.

Program Code: ME-301

SUBJECT TITLE: PERSONALITY DEVELOPMENT-I

SUBJECT CODE: BTPD-3521

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	2

Internal Assessment: 60 External Assessment: 40

In this student has to attend the classes for improving their personality skills

CO1	BTPD-3521.1	Demonstrate soft skills required for business situations and understand the importance of soft skills as well as interpersonal skills
CO2	BTPD-3521.2	Develop various kind of soft and professional skills
CO3	BTPD-3521.3	Communicate fluently
C04	BTPD-3521.4	Understand the importance of team building and time management
C05	BTPD-3521.5	Learn active listening and responding skills
C06	BTPD-3521.6	Learn the accurate styles of digital communication

Program Code: ME-301

SUBJECT TITLE: INDUSTRIAL TRAINING

SUBJECT CODE: BTME-3510

SEMESTER: 5

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	2

Internal Assessment: 60 End Term Exam: 40

In this student has to submit a file of what they have did in their Industrial training

CO1	BTME-3510.1	To participate in ongoing projects of the industry	
CO2	BTME-3510.2	Determine the use of advanced machining tools and techniques	
CO3	BTME-3510.3	nteract with industry personnel and follow the Engineering practices	
C04	BTME-3510.4	Develop awareness about general workshop behavior and built a team skills	

SYLLABUS

SEMESTER-VI

Program Code: ME-301

SUBJECT TITLE: DESIGN OF MACHINE ELEMENTS -II

SUBJECT CODE: BTME-3601

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	2	0	5

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact
No.		Hrs
1	Transmission Drives	
	Belt and rope drives: Basics, Characteristics of belt drives, selection of flat belt, Design of Flat belt, V-belt and rope (steel wire), Design of the pulley for the same, Chain Drives: Basics, Roller chains, polygonal effect, power rating, selection of chain, Gear drives: Standard system of gear tooth and gear module, gear tooth failure, strength of gear tooth, terminology of spur, helical, bevel, worm and worm wheel, Design of spur, helical, straight bevel gears, worm and worm wheel	
2	Bearings	8 Hrs
	Slider: Principle of hydrodynamic lubrication, modes of lubrication, Reynolds equation, bearing performance parameters, slider bearing design Roller: Types, selection guidelines, static and dynamic load carrying capacity, Stribeck's equation, equivalent bearing load, load life relationship, selection of bearing, comparison of roller and slider bearing	V === X
3	Design of Flywheel Introduction, Energy stored in a flywheel, stresses in a rim, design considerations Springs Types; end styles of helical compression spring; stress and deflection equation; surge in spring; nipping of leaf spring; Design of close-coil helical spring and multi leaf spring.	19 Hrs
4	Clutches	18 Hrs
	Design of contact clutches i.e. plate, multi-disc, cone and centrifugal	

clutches.	
Brakes	
Design of band, disc, block with shoe and internal expanding brakes.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3601.1	Able to design components of mechanical systems	
CO2	BTME-3601.2	Capable of designing mechanical components and assemblies for industrial	
		& domestic applications	
CO3	BTME-3601.3	Capable of modifying the existing systems and developing better	
		components	
C04	BTME-3601.4	Analyze and design of various types of clutches and brake of an	
		automobile, vehicle	

- 1. Joseph E. Shigley, Charles Russell Mischke, Richard Gordon Budynas, Mechanical Engineering Design, McGraw-Hill.2006.
- 2. Robert C. Juvinall Fundamentals of machine component design, JohnWiley Eastern.2008
- 3. V.K Jadon, Analysis and design of machine elements, I.K. International.2010
- 4. V.B Bhandari, Design of Machine elements, Tata Mc-Graw. Hill.2006
- 5. S.S Jolly, Design of machine elements-II, DhanpatRai and Co.2012

SUBJECT TITLE: HEAT TRANSFER

SUBJECT CODE: BTME-3602

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction:	20 Hrs
	Concept of heat transfer, Difference between the subject of "Heat	
	Transfer" and its parent subject "Thermodynamics". Different modes of	
	heat transfer - conditions, convection, and radiation.	
	Conduction:	
	Fouier's law of heat conduction, coefficient of thermal conductivity, effect	
	of temperature and pressure on thermal conductivity of solids, liquids and	
	gases and its measurement. Three-dimensional general conduction	
	equation in rectangular, cylindrical and spherical coordinates involving	
	internal heat generation and unsteady state conditions. Derivation of	
	equations for simple one dimensional steady state heat conduction from	
	three dimensional equations for heat conduction though walls, cylinders	
	and spherical shells (simple and composite), electrical analogy of the heat	
	transfer phenomenon in the cases discussed above. Influence of variable	
	thermal conductivity on conduction through simple cases of walls /	
	cylinders and spheres. Equivalent areas, shape factor, conduction through	
	edges and corners of walls and critical thickness of insulation layers on	
	electric wires and pipes carrying hot fluids. Internal generation cases	
	along with some practical cases of heat conduction like heat transfer	
	through piston crown, through under-ground electrical cables/Hot fluid	
	pipes etc and case of nuclear fuel rod with and without cladding.	
	Introduction to unsteady heat transfer, Newtonian heating and cooling of	
	solids; definition and explanation of the term thermal diffusivity.	

	Numerical	
2	Theory of Fins: Concept of fin, classification of fins and their applications. Straight fins of uniform cross-section; e.g. of circular, rectangular or any other cross-section). Straight fins with varying cross-sectional area and having triangular or trapezoidal profile area. Circumferential fins of rectangular cross-section provided on the circumference of a cylinder. Fin performance: fin effectiveness and fin efficiency, total fin effectiveness, total fin efficiency. Optimum design of straight fin of rectangular and triangular profile area. Application of fins in temperature measurement of flow through pipes and determination of error in its measurement. Numerical.	8 Hrs
3	Convection: Free and forced convection. Derivation of three-dimensional mass, momentum and energy conservation equations (with introduction to Tensor notations). Boundary layer formation, laminar and turbulent boundary layers (simple explanation only and no derivation). Theory of dimensional analysis and its application to free and forced convective. heat transfer. Analytical formulae for heat transfer in laminar and turbulent flow over vertical and horizontal tubes and plates. Numerical. Newton's law of cooling. Overall coefficient of heat transfer. Different design criterion for heat exchangers. Log mean temperature difference for evaporator and condenser tubes, and parallel and counter flow heat exchangers, Calculation of number and length of tubes in a heat exchanger effectiveness and number of transfer units(NTU); Numerical.	12 Hrs
4	Convection with Phase Change (Boiling and Condensation): Pool boiling, forced convection boiling, heat transfer during pool boiling of a liquid. Nucleation and different theories of nucleation, different theories accounting for the increased values of h.t.c. during nucleate phase of boiling of liquids; different phases of flow boiling (theory only), Condensation, types of condensation, film wise condensation on a vertical and inclined surface, Numerical. Radiation: Process of heat flow due to radiation, definition of emissivity, absorptivity, reflectivity and transmissivity. Concept of black and grey bodies, Plank's law of nonchromatic radiation. Kirchoff's law and Stefan Boltzman's law. Interchange factor. Lambert's Cosine law and the geometric factor. Intensity of Radiation (Definition only), radiation density, irradiation, radiosity and radiation shields. Derivation formula for radiation exchange between two bodies using the definition of radiosity and irradiation and its application to cases of radiation exchange between three or four bodies (e.g. boiler or other furnaces), simplification of the formula for its application to simple bodies like two parallel surfaces, concentric cylinders and a body enveloped by another body etc. Error in Temperature measurement by a thermocouple probe due to radiation	20 Hrs

losses.	
103563.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3602.1	To understand the basic modes of heat transfer
CO2	BTME-3602.2	1
		engineering systems
CO3	BTME-3602.3	Obtain numerical solutions for conduction, convection and radiation heat
		transfer problems
C04	BTME-3602.4	Design heat exchangers using LMTD and NTU methods

- 1. Frank P. Incropera and David P. De Witt, Fundamentals of Heat and Mass transfer, John Wiley.2014
- 2. P.S. Ghoshdastidar, Heat Transfer, Oxford Press. 2008
- 3. D.S. Kumar, Fundamentals of Heat and Mass Transfer, SK Kataria & Sons (6th/7th Edition).2002
- 4. A.J. Chapman, Heat Transfer, McGraw Hill Book Company, New York.2004
- 5. J.P. Holman, Heat Transfer, Tata McGraw-Hill Publishing Company Ltd.(Special Indian Edition).2006
- 6. Yunus A. Cengel, Heat and Mass Transfer, Tata McGraw Hills Education Private Ltd (Special Indian Edition). 2008
- 7. Eckert & Drake, Heat and Mass Transfer, McGraw Hill Book Company, New York.2012

Program Code: ME-301

SUBJECT TITLE: FLUID MACHINERY

SUBJECT CODE: BTME-3603

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact
No.		Hrs
1	General Concepts: Impulse momentum principle; jet impingement on	6 Hrs
	stationary and moving flat plates, and on stationary or moving vanes with	
	jet striking at the centre and tangentially at one end of the vane;	
	calculations for force exerted, work done and efficiency of jet.	
	Basic components of a turbo machine and its classification on the basis of	
	purpose, fluid dynamic action, operating principle, geometrical features,	
	path followed by the fluid and the type of fluid etc. Euler's equation for	
	energy transfer in a turbo machine and specifying the energy transfer in	
	terms of fluid and rotor kinetic energy changes.	
2	Pelton Turbine:	16 Hrs
	Component parts and operation; velocity triangles for different runners,	
	work output; Effective head, available power and efficiency; design	
	aspects such as mean diameter of wheel, jet ratio, number of jets, number	
	of buckets with working proportions	
	Francis and Kaplan Turbines:	
	Component parts and operation velocity triangles and work output;	
	working proportions and design parameters for the runner; Degree of	
	reaction; Draft tubes - its function and types. Function and brief	
	description of commonly used surge tanks, Electro- Mechanical governing	
	of turbines	
3	Centrifugal Pumps:	16 Hrs
	Layout and installation; Main elements and their functions; Various types	
	and classification; Pressure changes in a pump - suction, delivery and	

	manometric heads; vane shape and its effect on head-capacity relationships; Departure from Euler's theory and losses; pump output and efficiency; Minimum starting speed and impeller diameters at the inner and outer periphery; Priming and priming devices, Multistage pumps - series and parallel arrangement; submersible pumps. Construction and operation; Axial and mixed flow pumps; Trouble shooting - field problems, causes and remedies. Similarity Relations and Performance Characteristics: Unit quantities, specific speed and model relationships, scale effect; cavitation and Thoma's cavitation number; Concept of Net Positive Suction Head (NPSH) and its application in determining turbine / pump setting	
4	Reciprocating Pumps: Components parts and working; pressure variations due to piston	12 Hrs
	acceleration; acceleration effects in suction and delivery pipes; work done	
	against friction; maximum permissible vacuum during suction stroke; Air vessels	
	Hydraulic Devices and Systems:	
	Const., operation and utility of simple and differential accumulator,	
	intensifier, fluid coupling and torque converter, Air lift and jet pumps;	
	gear, vane and piston pumps, Hydraulic Rams	

CO1	BTME-3603.1	To understand the basic concepts of impact of jet with respect to hydro
		turbo machines
CO2	BTME-3603.2	Discuss the different machinery along with their practical approach
CO3	BTME-3603.3	To understand and design various types of hydraulic turbines and their
		phenomenon for static and dynamic application
C04	BTME-3603.4	To gain knowledge of different hydraulic pumps and their characteristics for
		different applications in Mechanical engineering

- <u>Suggested Readings / Books:</u>
 1. R.L. Daughaty, Hydraulic Turbines, McGraw Hill. 2009
- 2. JagdishLal, Hydraulic Machines by Metropolitan Book Co 1998
- 3. D.S. Kumar, Fluid Mechanics and Fluid Power Engineering, SK Kataria and Sons,1996
- 4. K. Subramaniam, Hydraulic Machines, Tata McGraw Hill.2007
- 5. R.K. Purohit., Hydraulic Machines, Scientific Publishers. 2011

Program Code: ME-301

SUBJECT TITLE: HEAT TRANSFER LAB

SUBJECT CODE: BTME-3604

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

Contents of Syllabus

S. No.	Contents	Contact Hrs
1	Determination of thermal conductivity of: A solid insulating material by slab method, Powder materials by concentric spheres method / or by some transient heat transfer technique, A metal by comparison with another metal by employing two bars when kept in series and /or in parallel under different boundary conditions, Liquids by employing thin layer	4 hrs
2	Determination of coefficient of heat transfer for free/forced convection from the surface of cylinder/plate when kept: Along the direction of flow, Perpendicular to the direction of flow, Inclined at an angle to the direction of flow	4 Hrs
3	To plot the pool boiling curves for water and to determine its critical point	2 Hrs
4	Determination of heat transfer coefficient for i) film condensation ii) drop-wise condensation	2 Hrs
5	Determination heat transfer coefficient by radiation and hence find the Stefan Boltzman's constant using two plates/two cylinders of same size by making one of the plates/cylinders as a black body.	2 Hrs
6	Determination of shape factor of a complex body by an analog technique	2 Hrs
7	 To plot the temperature profile and to determine fin effectiveness and fin efficiency for: 1. A rod fin when its tip surface is superimposed by different boundary condition like Insulated tip, Cooled tip and Temperature controlled tip 2. Straight triangular fins of various sizes and optimization of fin proportions 3. Circumferential fins of rectangular/triangular section 	4 Hrs

CO1	BTME-3604.1	Understand the effects of various heat transfer modes
CO2	BTME-3604.2	To experimentally determine the thermal conductivity of insulating rod and powders

CO3	BTME-3604.3	Comparative evaluation between natural and forced conventions through experimental approach
C04	BTME-3604.4	Determine the experimentation on radiation for finding out the value of Stefan Boltzmann's constant and emissivity of metallic surface

Program Code: ME-301

SUBJECT TITLE: FLUID MACHINERY LAB

SUBJECT CODE: BTME-3605

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Determination of various efficiencies of Hydraulic Ram	2 Hrs
2	To draw characteristics of Francis turbine/Kaplan Turbine	2 Hrs
3	To study the constructional features of reciprocating pump and to	2 Hrs
	perform test on it for determination of pump performance	
4	To draw the characteristics of Pelton Turbine	2 Hrs
5	To draw the various characteristics of Centrifugal pump	2 Hrs
6	Determine the effect of vane shape and vane angle on the performance of centrifugal fan/Blower	2 Hrs
7	A visit to any Hydroelectric Power Station	2 Hrs

CO1	BTME-3605.1	Interpret the dynamic action of liquid jets in developing motive forces on objects
CO2	BTME-3605.2	Explain the concept of hydraulic ram and different types of turbine
CO3	BTME-3605.3	Illustrate the concept of specific speed and unit quantities as applied to turbines and pumps
C04	BTME-3605.4	Explain the construction of centrifugal pumps. Make use of the governing equations for head developed, power and efficiency of centrifugal pumps

Program Code: ME-301

SUBJECT TITLE: PERSONALITY DEVELOPMENT-II

SUBJECT CODE: BTPD-3621

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 External Assessment: 40

In this student has to attend the classes for improving their personality skills

CO1	BTPD-3621.1	Make use of techniques for self-awareness and self-development
CO2	BTPD-3621.2	Apply the conceptual understanding of communication into everyday practice
CO3	BTPD-3621.3	Understand the importance of teamwork and group discussions skills
C04	BTPD-3621.4	Develop time management and stress management
C05	BTPD-3621.5	Apply business etiquette effectively an engineer requires communicate fluently and develop all the soft and profession skills required for corporate sector
C06	BTPD-3621.6	Learn to overcome problems associated with personality

Program Code: ME-301

SUBJECT TITLE: MINOR PROJECT

SUBJECT CODE: BTME-3606

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

In this student has to give a proposal to the project they have decided

CO1	BTME-3606.1	To find out the relevant research gaps from the existing literature review
CO2	BTME-3606.2	Analyze the problem formulation and identify the methodology of your
		work
CO3	BTME-3606.3	Design the blue prints of your project
C04	BTME-3606.4	Fabrication of your project

Program Code: ME-301

(OPEN ELECTIVE-I)

SUBJECT TITLE: STATISTICAL AND NUMERICAL METHODS IN ENGINEERING

SUBJECT CODE: BTME-3600

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Data, its Arrangements and Measures:	22 Hrs
	Introduction: Data, Data Array; Frequency Distribution Construction and Graphic representation. Mean, median, mode and standard deviation.	22 1113
	Probability and Probability Distributions:	
	Introduction: Definition probability and Probability Distribution; Conditional probability; Random variables, Poisson, Normal and Binomial	
	distributions	
	Sampling and Sampling Distributions:	
	Introduction: Fundamentals of Sampling, Large samples, small samples;	
	Normal sampling distributions; Sampling distribution of the means, t-	
	Distribution, F-Distribution, Chi-square Distribution.	
2	Errors in Numerical Calculations:	20 Hrs
	Errors and their analysis, general error formula, errors in a series	
	approximation	
	Solution of Algebraic and Transcendental Equations:	
	Bisection method, iteration method, Method of false position, Newton-	
	Raphson method, solution of systems of non linear equations.	
	Interpolation Method:	
	Finite difference, forward, backward and central difference, Difference of	
	polynomial, Newton's formulae for interpolation, central difference	
	interpolation formulae, Interpolation with unevenly spaced points, Newton's	

	general interpolation formula, interpolation by iteration.	
3	Numerical Differentiation and Integration: Numerical differentiation, maximum and minimum values of a tabulated function; Numerical Integration-trapezoidal rule, Simpson1/3 rule, Simpsons 3/8 rule, Newton-cots integration formulae; Euler-Meclaurin formula, Gaussian integration(One dimensional only) Solution of Linear Systems of Equations: Gauss Elimination method (fall and banded symmetric and unsymmetric systems), Gauss Jordon method. Eigen value problems (Power method only).	10 Hrs
4	Numerical solution of ordinary and partial differential equations: Solution by Taylor's series, Prediction -correction method, Boundary value problems, Prediction corrector method, Euler's and modified Euler's method, Runge-Kutta method, finite difference methods. Finite difference approximation to derivatives, Solution to Laplaces equation- Jacobi's method, Gauss -Siedel method.	8 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3600.1	To understand the basic concepts of data collection and distribution for approximation of system problems
CO2	BTME-3600.2	To understand various types of optimization techniques for different application
CO3	BTME-3600.3	To implement the use of differentiation and Integration in numerical methods
C04	BTME-3600.4	To gain knowledge of ordinary and partial differential equations and its applications in Mechanical Engineering

- 1. S. S. Sastry, Introductory methods of numerical analysis by: Prentice Hall of India. 2005
- 2. V. RajaRaman, Computer Oriented Numerical Methods. 2008
- 3. S.D. Conte, Cari De Boor, Elementary Numerical Analysis, McGraw Hill.2012
- 4. B. Cornahn, Applied Numerical Methods, John Wiley. 2013
- 5. Richard I. Levin, S. David., Rubin Statistics for Management, Pearson. 2012

Program Code: ME-301

(OPEN ELECTIVE-I)

SUBJECT TITLE: ENTERPRISE RESOURCE PLANNING

SUBJECT CODE: BTME-3600

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Unit I	15 Hrs
	ERP Introduction, Benefits, Origin, Evolution and Structure: Conceptual	
	Model of ERP, the Evolution of ERP, the Structure of ERP.	
2	Unit II	10 Hrs
	Business Process Reengineering, Data ware Housing, Data Mining, Online	
	Analytic Processing (OLAP), Product Life Cycle Management (PLM), LAP,	
	Supply chain Management.	
3	Unit III	10 Hrs
	ERP Marketplace and Marketplace Dynamics: Market Overview,	
	Marketplace Dynamics, the Changing ERP Market. ERP- Functional	
	Modules: Introduction, Functional Modules of ERP Software, Integration of	
	ERP, Supply chain and Customer Relationship Applications.	
4	Unit IV	8 Hrs
	ERP Implementation Basics, ERP Implementation Life Cycle, Role of	
	SDLC/SSAD, Object Oriented Architecture, Consultants, Vendors and	
	Employees.	
5	Unit V	10 Hrs
	ERP & E-Commerce, Future Directives- in ERP, ERP and Internet, Critical	
	success and failure factors, Integrating ERP into organizational culture.	
	Using ERP tool: either SAP or ORACLE format to case study.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3600.1	Develop model for ERP for large projects
CO2	BTME-3600.2	Develop model for E-commerce architecture for any application
CO3	BTME-3600.3	Describe the advantages, strategic value, and organizational impact of utilizing an ERP system for the management of information across the functional areas of a business: sales and marketing, accounting and finance, human resource man-agreement, and supply chain.
C04	BTME-3600.4	Demonstrate a working knowledge of how data and transactions are integrated in an ERP system to manage the sales order process, production process, and procurement process.

- 1. Alexis Leon, "ERP Demystified", Tata McGraw Hill
- 2. Rahul V. Altekar "Enterprise Resource Planning", Tata McGraw Hill,
- 3. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning A Concepts and Practice", PHI
- 4. Mary Summer, "Enterprise Resource Planning"- Pearson Education

(OPEN ELECTIVE-I)

SUBJECT TITLE: ELECTRICAL MEASURING INSTRUMENTS

SUBJECT CODE: BTME-3600

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Basics of Measurements: Accuracy, Precision, resolution, reliability,	15 Hrs
	repeatability, validity, Errors and their analysis, Standards of measurement.	
	Bridge Measurement: DC bridges- wheatstone bridge, AC bridges – Kelvin,	
	Hay, Maxwell, Schering and Wien bridges, Wagner ground Connection.	
	Electronic Instruments for Measuring Basic Parameters: Amplified DC	
	meter, AC Voltmeter, True- RMS responding Voltmeter, Electronic multi-	
	meter, Digital voltmeter, Vector Voltmeter.	
2	Oscilloscopes: Cathode Ray Tube, Vertical and Horizontal Deflection	10 Hrs
	Systems, Delay lines, Probes and Transducers, Specification of an	
	Oscilloscope. Oscilloscope measurement Techniques, Special Oscilloscopes	
	- Storage Oscilloscope, Sampling Oscilloscope. Signal Generators: Sine	
	wave generator, Frequency – Synthesized Signal Generator, Sweep	
	frequency Generator. Pulse and square wave generators. Function Generators	
3	Signal Analysis: Wave Analyzer, Spectrum Analyzer. Frequency Counters:	10 Hrs
	Simple Frequency Counter; Measurement errors; extending frequency	
	range of counters Transducers: Types, Strain Gages, Displacement	
	Transducers.	
4	Digital Data Acquisition System: Interfacing transducers to Electronics	18 Hrs
	Control and Measuring System. Instrumentation Amplifier, Isolation	
	Amplifier. An Introduction to Computer-Controlled Test Systems.IEEE-488	

GPIB Bus	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3600.1	Identify various types of electronic instrument suitable for specific
		measurement.
CO2	BTME-3600.2	Classify various errors present in measuring instruments.
CO3	BTME-3600.3	Comprehend different types of signal generators and analyzers, their construction and operation.
C04	BTME-3600.4	Describe the working principle, selection criteria and applications of various transducers used in measurement systems.

- 1. Modern Electronics Instrumentation & Measurement Techniques, by Albert D.Helstrickand William D.Cooper, Pearson Education. Selected portion from Ch.1, 5-13.
- 2. Elements of Electronics Instrumentation and Measurement-3rd Edition by Joshph
- 3. J.Carr.Pearson Education. Selected portion from Ch.1,2,4,7,8,9,13,14,18,23 and 25.

Program Code: ME-301

(OPEN ELECTIVE-I)

SUBJECT TITLE: WIRELESS AND MOBILE COMMUNICATIONS

SUBJECT CODE: BTME-3600

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

Contents of Syllabus

S.	Contents	Contact
No.		Hrs
1	Introduction to wireless communications: Evolution of mobile radio	15 Hrs
	communications, paging system, cordless telephone system, cellular	
	telephone system, Modern wireless communication systems: 2G networks,	
	3G networks, Bluetooth and personal area networks.	
2	Mobile radio propagation: large scale path loss – Free space propagation	18 Hrs
	model, basic propagation mechanisms. Digital Cellular Transmission,	
	Spread Spectrum Transmissions Local Area & Ad Hoc Networks: LAN	
	Technologies: Evolution of Wireless LAN, IEEE802.11, Physical, Layer,	
	MAC Sub-layer, routing algorithms. Adhoc networks: Characteristics –	
	Performance issues. Overview to Wireless ATM, HYPERLAN,	
	IEEE802.15 Wireless PAN, and Home RF.	
3	Bluetooth Cellular concepts: Frequency reuse, channel assignment	20 Hrs
	strategies, hand off strategies, interference and system capacity, improving	
	coverage and capacity in cellular systems, routing in mobile hosts. Mobile	
	IP – DHCP – Mobile transport layer – Indirect TCP – Snooping TCP –	
	Transmission / time-out freezing – Selective retransmission – Transaction	
	oriented TCP.	

CO1	BTME-3600.1	Explain the Classification of mobile communication systems
CO2		To introduce the concepts and techniques associated with Wireless Cellular Communication systems.
CO3	BTME-3600.3	To familiarize with state of art standards used in wireless cellular systems.
C04	BTME-3600.4	Ability to analyze improved data services in cellular communication

- 1. William Stallings, "Wireless Communications and Networks", 2nd edition, Prentice Hall of India / Pearson Education, 2007.
- 2. Uwe Hansmann, Lothar Merk, Martin S Nicklons and Thomas Stober, "Principles of Mobile Computing", 2nd edition, Springer International, 2007.
- 3. Raj Kamal, "Mobile Computing", 2nd edition, Oxford University Press, 2007.
- 4. Dharma P Agarwal and Carlos Cordeiro, "Adhoc and Sensor Networks Theory and Applications", 1st edition, World Scientific Publications, 2007.
- 5. C Siva Ram Murthy, "Adhoc Wireless Networks Architecture and Protocols", 2nd edition, Prentice Hall PTR, 2008.

(DEPARTMENTAL ELECTIVE-II)

SUBJECT TITLE: AUTOMOTIVE CHASSIS SYSTEM

SUBJECT CODE: BTME-3611

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Front Axle and Steering System	15 Hrs
	Functions of front axle, Types of front axle, Construction, Stub axle and	
	Wheel bearing, Front wheel steering Geometry – castor, Camber, King pin	
	inclination, toe-in, toe-out, Centre point Steering, Self-returning property,	
	Adjusting and checking of front wheel geometry, Ackerman and Davis	
	steering linkages, Steering system layout, Steering gear boxes.	
2	Wheels and Tyres	18 Hrs
	Basic requirements of wheels and tyres, Types of road wheels,	
	Construction of wheel assembly, wheel balancing, Tyre construction,	
	material, types, tubeless, cross ply radial type, tyre sizes and designation,	
	Aspect ratio, tyre trade pattern, tyre valve, Tyre inflation pressure, safety	
	precautions in tyres, Tyre rotation and matching, Types of Tyre wear and	
	their causes, Selection of tyres under different applications, tyre retreating	
	hot and cold, factors affecting tyre performance.	
3	Braking Systems	10 Hrs
	Function and requirements of braking system, Types of brakes, Elementary	
	theory of shoe brake, drum brake arrangement, disc brake arrangement,	
	self-energizing, brake friction material. brake linkages, hydraulic brake	
	system and components, hydraulic brake fluids, air brakes, vacuum servo	
	assisted brake, engine exhaust brake, parking brakes, dual power brake	
	system, regenerative brake system, fail-safe brake, anti – lock brakes, anti-	

	skid brakes, brake efficiency and testing, weight transfer, braking ratio.	
4	Vehicle Chassis	10 Hrs
	Introduction To chassis, chassis operating condition, chassis frame, vehicle	
	components location. Manufacturing processes for chassis, causes of	
	chassis failure	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3611.1	Elaborate the constructional details and operations of chassis systems like steering system, suspension system etc.
CO2	BTME-3611.2	Interpret the underlying mechanics of the chassis systems.
CO3	BTME-3611.3	Apply steering geometry for a given vehicular application.
C04	BTME-3611.4	Select/Configure components or subsystems for integration into main chassis system.

- 1. Motor Vehicles, Newton, Steed and Garrot, 13th Edition, Butterworth London
- 2. Vehicle and Engine Technology, Heisler, Second Edition SAE International Publication.
- 3. Advanced Vehicle Technology, Heisler, Second Edition SAE International Publication.
- 4. The Automotive Chassis, J. Reimpell H. Stoll, J.W. Betzler, SAE International Publication.

(DEPARTMENTAL ELECTIVE-II)

SUBJECT TITLE: NON-DESTRUCTIVE TESTING

SUBJECT CODE: BTME-3612

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Introduction:	6 Hrs
	Classification of techniques of material testing, Need and Significance of	
	Non Destructive Testing methods, type of Non Destructive testing	
	methods	
2	Radiographic Examination:	12 Hrs
	Radiant energy and radiography, practical applications, X-ray and	
	Gamma –ray equipment, effect of variables on radiographs, requirement	
	of a good radiograph, interpretation of radiograph, safety precautions,	
	Xeroradiography.	
3	Magna flux methods:	10 Hrs
	Basic principles, scope and applications, magnetic analysis of steel bars	
	and tubing magnetization methods, equipment, inspection medium,	
	preparation of surfaces Fluorescent Penetration inspection,	
	Demagnetization.	
4	Electrical and ultrasonic Methods:	12 Hrs
	Basic principles, flaw detection in rails and tubes (Sperry Detector),	
	Ultrasonic testing surface roughness, moisture in wood, Detection of	
	defects in ferrous and non ferrous metals, plastics, ceramics,	
	measurement of thickness, hardness, stiffness, sonic material analyzer,	
	proof tests, concrete test hammer.	
	Photoelasticity:	

Concept and applications of Plane and circular polarization, Photo stress,	
models.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3612.1	To understand need and Significance of Non Destructive Testing methods in engineering perspective
CO2	BTME-3612.2	To select an appropriate NDT technique as per requirement
CO3	BTME-3612.3	The student shall be able to set various process parameters and control the NDT process for the desired output parameters
C04	BTME-3612.4	The student shall be competent enough to make use of modern tools and software's for analyzing and solving real life problems

- 1. H.E. Davies, G.E Troxell and GFW Hauck, The testing of Engg materials, McGraw Hill. 2014
- 2. W.H Armstrong, Mechanical Inspection, McGraw Hill.2010

(DEPARTMENTAL ELECTIVE-II)

SUBJECT TITLE: PRODUCT DESIGN AND DEVLOPMENT

SUBJECT CODE: BTME-3613

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Visual Design:	8 Hrs
	Basic elements and concept of visual design-line color, Balance	
	proportion, Size shape mass, unity and variety, Special relationships and	
	composition in two and three dimensions.	
2	Form and Color:	12 Hrs
	Elementary forms their characteristics and significance in design. Form	
	transition, Form in relation to ergonomics, material and manufacturing	
	process, color as an element of design, color clarification dynamics,	
	interrelation of colors, colors and traditions; Psychological use of color	
	form and material.	
3	Product Graphics:	6 Hrs
	Meaning and objectives of product graphics. Basic principles of graphic	
	design, Visual communication aspects of product graphics, Graphics of	
	displays and control panels.	
4	Product Detailing:	14 Hrs
	Standard fastening and joining details in different materials; Temporary	
	and permanent joints, Detailing for plastic products, Detailing for	
	fabricated products in sheet metal	
	Products Development:	
	Definition and objective, Role of designer in product development.	
	Manufacturing and economic aspects of product development, Product	

promotions, product developments.	
promotions, product developments.	
1 /1 1	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3613.1	Describe the characteristics used for product design and development.
CO2	BTME-3613.2	Assess the customer requirements in product design
CO3	BTME-3613.3	Identify various aspects of design such as industrial design, design for manufacture, assembly, service and quality and product architecture.
C04	BTME-3613.4	Explain various principles and technologies used for the preparation of prototype.

- 1. W.H. Mayal, Industrial Design for Engineers, London Liifee Books Ltd.2006
- 2. Huchingson R. Dale, New Horizons for Human Factors in Design, McGraw Hill.2008
- 3. N.L. Svensson, Engineering Design. 2002
- 4. R. Matousek, Engineering Design. 2004
- 5. K. J. Mccormick (Ed), Human Factor Engineering, McGraw Hill. 2005

(DEPARTMENTAL ELECTIVE-II)

SUBJECT TITLE: MECHATRONICS

SUBJECT CODE: BTME-3614

SEMESTER: 6

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S No.	Content	Contact Hrs
1.	Introduction: Definitions, trends, control systems, microprocessor / micro controller based controllers, PC based controllers, applications: SPM, robot, CNC machine, FMS, CIM. Sensor Technology: Sensor and transducers, terminology, displacement, position, proximity - encoders, velocity - tachogenerators, force - strain gauges, pressure, temperature-thermocouples, RTDs, thermistors, light sensors - photoelectric sensors, IR sensors, sensor selection.	9 Hrs
2	Electronic Devices and Circuits: Semiconductor devices, diodes and LEDS, zener diodes and voltage regulator, inductive kick, bandwidth, frequency %& response of a measurement system, bipolar transistor circuits, amplifiers. Electromechanical Drives: Relays and solenoids, stepper motors, DC brushed and brushless motors, DC servo motors, AC / DC motors for non-servo motion drives, braking methods, pulse width modulated, Bipolar driver, Mosfet drives, SCR drives, variable frequency drives. Digital Electronics: Digital logic, number systems, logic gates, Boolean algebra, Karnaughrnaps, sequential logic	11Hrs
3	Signal Conditioning: Introduction, the operational amplifier, protection, filtering, Wheatstone bridge, digital signals, multiplexers, data acquisition, digital signal processing, pulse-modulation. Precision Mechanical Actuation: Pneumatic actuation systems, electropneumatic actuation systems, hydraulic actuation systems, electro-	11 Hrs

	hydraulic actuation systems, mechanical systems, types of motion, kinematics, inverse kinematics, timing belts, ball screw and nut, linear motion guides, linear bearings, harmonic transmission, bearings, motor / drive selection	
4	Microprocessors: Control, microcomputer structure, microcontrollers, digital interfacing, analog interfacing, DAC, ADC, applications. Input / Output Systems: Interfacing, input / output ports, interface requirements, peripheral interface adapters, serial communication interface, direct memory access. Control System: System transfer function, Laplace transformation and its applications, continuous and discrete processes, proportional control, integral control, differential control, PID control, digital controllers, control system performance, controller tuning, adaptive control, frequency response, PLC, PMC, Introduction to fuzzy logic and neural networks.	11 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3614.1	Understand key elements of Mechatronics system, representation into block diagram
CO2	BTME-3614.2	Understand concept of transfer function, reduction and analysis
CO3	BTME-3614.3	Interfacing of Sensors, Actuators using appropriate DAQ micro-controller
C04	BTME-3614.4	Time and Frequency domain analysis of system model (for control application)

- 1. Understanding Electro-Mechanical Engineering An Introduction to Mechatronics by Kamm, Prentice-Hall of India.
- 2. Computer Control of Manufacturing system by, Koren, McGraw Hill.
- 3. Production Systems and CIM by Groover, PHI.
- 4. Flexible Manufacturing systems by Maleki, Prentice Hall.
- 5. Feedback Control Systems by BC. Kuo, PHI.

(DEPARTMENTAL ELECTIVE-II)

SUBJECT TITLE: TOOL DESIGN SUBJECT CODE: BTME-3615

SEMESTER: 6

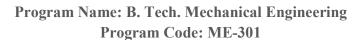
CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks


S No.	Content	Contact Hrs
1.	Design of Jigs: Introduction – Location Principles – Six Point Location Principle – Locators – Clamping Principles – Clamping Devices – Drill Jigs – Drill Bushes – Drill Jig Types – Design and Development of Jigs for given components.	9 Hrs
2	Design of Fixtures: Milling Fixtures – Milling Methods – Milling Fixture Types – Turning fixtures – Broaching Fixtures – Grinding Fixtures – Assembly, Inspection and Welding Fixtures – Modular Fixtures – Design and Development of Fixtures for given components.	11 Hrs
3	Design of Dies: Power presses types and construction details, die cutting operation, cutting action in die and punch, center of pressure, clearance and its significance, cutting forces, methods of reducing cutting forces, methods of punch support, strippers, stock stops, guide pilots, knockout, design of blanking and piercing dies. Design Concepts and description of the components of progressive dies. Design of progressive dies. Design of compound dies. Design of combination dies.	11 Hrs
4	Drawing Dies: Metal flow and factors affecting drawing, blank size calculations, drawing force, single and double acting drawing dies, design and development of drawing dies for different components.Bending and Forming Dies: Spring back, bend allowance; calculation of development length, bending force calculations types of bending dies. Curling dies.Forging process and forging dies. (Introductory Treatment)	11 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-3615.1	To develop a solution oriented approach by in depth knowledge of Machine Tool Design
CO2	BTME-3615.2	To address the underlying concepts, methods and application of Machine Tool Design
CO3	BTME-3615.3	To analyze the different types of die structure
C04	BTME-3615.4	Study about bending and forming dies

- 1. Design Principles of Metal-Cutting Machine Tools by F. Koenigsberger
- 2. Machine Tool Design by N. K. Mehta. McGraw Hill Publishing
- 4. Machine Tool Design by Acherkan, Mir publishing
- 5. Machine Tool Design by S.K, Basu, Oxford and IBH Publishing
- 6. Machine tool design by Sen and Bhattacharya, CBS Publications

SYLLABUS

SEMESTER-VII

SUBJECT TITLE: INDUSTRIAL ENGINEERING & MANAGEMENT

SUBJECT CODE: BTME-4701

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction:	11 Hrs
	Definition and scope of industrial engineering, Functions of industrial engineering department and its organization, Qualities of an industrial engineer, concept of production and productivity	11 1113
	Concepts of Management:	
	Functions of Management, Evolution of Management Thought: Taylor's Scientific Management, Fayol's Principles of Management, Douglas Mc-	
	Gregor's Theory X and Theory Y, Mayo's Hawthorne Experiments, Hertzberg's Two Factor Theory of Motivation, Maslow's Hierarchy of Human Needs – Systems Approach to Management.	
3	Designing Organizational Structures:	9 Hrs
	Concept, Importance and characteristics of organization, Types of organization - Project, matrix and informal organization. Span of control, Delegation of authority.	
	Management Planning, Decision Making and Control:	
	Steps, hierarchy, principles and dimensions of planning function,	
	Approaches to decision making, Decision support systems, Basic control process, control parameters, principles of control	
5	Plant Location & Layout:	10 Hrs
	Plant location: definition, factors affecting the plant location, comparison	
	of rural and urban sites-methods for selection. Plant layout: Needs for a good layout, Different types viz. Product, process and combination layouts, Introduction to layouts based on the GT, JIT and cellular	

	manufacturing systems, Development of plant layout.	
	Productivity:	
	Definition, reasons for low productivity, methods to improve	
	productivity, relation between work-study and productivity.	
7	Work Analysis:	10 Hrs
,	Definition, need and scope of Work Analysis. Method-study: Definition,	10 111 9
	objectives, step-by-step procedure, questioning techniques, charts and	
	diagrams for recording data. Principles of motion economy;	
	Development and installation of new method. Work measurement:	
	Definition, various techniques of work-measurement such as work-	
	sampling, stopwatch time study & its procedure, Job selection,	
	Equipment and Forms used for work measurement, need for rating	
	operator, methods of rating, allowances and their types, standard time.	
	Standard data techniques.	
	Value Engineering:	
	Definition, Types of values, concept, phases and application of value	
	engineering.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4701.1	Understand the basic concepts of production, productivity and function of
		management
CO2	BTME-4701.2	To gain knowledge of hierarchy, principles and dimensions of planning
		function of organizations
CO3	BTME-4701.3	Determine the various theories and approaches related to Industrial
		Engineering
C04	BTME-4701.4	Discuss the importance of Value Engineering in today's Industry

- 1. Philip E Hick, Industrial Engineering & Management, Tata McGraw Hill. 2014
- 2. Lawrence D. Miles, Techniques of Value Analysis and Engineering, McGraw Hill. 2012
- 3. R.N. Nauhria, RajnishParkash, Management of Systems, Wheeler Publishers 2004
- 4. S. Buffa, Modern Production Management, Wiley Eastern. 2008
- 5. H.S. Shan, Work Study and Ergonomics, DhanpatRai and Co. (P) Ltd. 2004

SUBJECT TITLE: REFRIGERATION AND AIRCONDITIONING

SUBJECT CODE: BTME-4702

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Basic Concepts: Definition of Refrigeration and Air conditioning; Difference between Refrigeration and cooling; Difference between Refrigeration and Air conditioning; Brief history of Refrigeration and Air conditioning; Natural and Mechanical Refrigeration; Applications of Refrigeration and Air conditioning; Definitions of refrigerant, cooling/ Refrigeration effect, cooling capacity, heating effect, heating capacity; Units of refrigeration; Coefficient of performance and Energy Efficient Ratio; COP of a refrigerator; and COP/EPR of a heat pump; Single Phase Reversed Carnot cycle and its limitations; Two Phase Reversed Carnot cycle and its limitations; Methods of Refrigeration; Numerical. Gas Cycle Refrigeration and Aircraft Refrigeration & Air conditioning: Bell Coleman/Reversed Brayton/ Reversed Joule Cycle and its analysis; Numerical; optimum COP and pressure ratio (No mathematical Analysis); Applications of Gas Cycle Refrigeration; Necessity of aircraft refrigeration and air conditioning systems; Simple/basic aircraft refrigeration and air conditioning system (with and without evaporative cooler); Need of evaporator cooler; Boot Strap aircraft refrigeration and air conditioning system (with and without evaporative cooler); Regenerative aircraft refrigeration and air conditioning system; Reduced Ambient aircraft refrigeration and air conditioning system; Dry Air Rated Temperature (DART); Comparison of different aircraft refrigeration and air conditioning systems; Numerical.	13 Hrs

2	Vapour Compression Refrigeration Cycle:	10 Hrs
_	Vapour compression refrigeration system and its basic components;	10 1113
	Representation of Simple/ Theoretical vapour compression refrigeration	
	cycle on P-v, T-s and P-h diagrams; Dry versus wet compression;	
	expansion versus throttling of liquid refrigerant; Analysis of	
	Simple/Theoretical vapour compression refrigeration cycle; Introduction	
	of P-h diagram/chart and Refrigeration Tables; Determination of	
	properties of sub cooled, saturated and superheated refrigerant by using	
	saturated properties & specific heat tables/saturated & superheated	
	properties tables and P-h diagram; Compressor work and volumetric	
	efficiency; Effect on performance and cooling capacity due to change in	
	evaporator pressure, condenser pressure, sub cooling of liquid refrigerant,	
	super heating of suction vapours, use of liquid - vapour regenerative heat	
	exchanger; Effect on performance and cooling capacity due to heat	
	exchange of vapours with compressor cylinder walls, pressure drop in	
	suction (wire drawing) and discharge valves, pressure drop in evaporator	
	and condenser; Actual vapour compression refrigeration cycle on T-s and	
	P-h diagrams (No mathematical analysis); Numericals. Flash gas, its	
	advantages and disadvantages, and its removal: flash chamber, liquid sub-	
	cooler; Brief introduction (no mathematical analysis) to compound	
	(multistage) compression, its advantages, schematic representation of	
	these systems with use of flash chamber, water intercooler, flash	
	intercooler, liquid sub-cooler (independent and combination of these);	
	Brief introduction (no mathematical analysis) to multiple evaporator	
	systems, schematic representation of these systems with use of individual	
	and multiple expansion valves arrangements, with single and multiple	
	(individual and compound) compressor.	
3	Vapour Absorption Refrigeration Cycle (No Mathematical Analysis):	12 Hrs
	Principle of vapour absorption refrigeration; basic components of the	
	vapour absorption refrigeration system; Desirable properties of absorption	
	system refrigerant and absorbent; Aqua - ammonia vapour absorption	
	refrigeration system; Lithium Bromide - water absorption system (Single	
	and double effect);Electrolux refrigeration system; comparison between	
	vapour absorption and compression systems.	
	Refrigerants: Classification and nomenclature of refrigerants; Desirable	
	thermodynamic, chemical and physical properties of refrigerants;	
	comparative study of commonly used refrigerants and their fields of application; Azeotropes; Zeotropes; Effect of moisture and oil miscibility;	
	Refrigerants dying agents and antifreeze solution; leak detection and	
	charging of refrigerants; environmental aspects of conventional	
	refrigerants; Ecofriendly refrigerants and action plan to reduce ecological	
	hazards.	
	Alternative Refrigeration Systems and Low Temperature Refrigeration:	
	(No Mathematical Analysis)	
	Steam Jet Refrigeration; Mixed Refrigeration Systems; Vortex Tube	

	Refrigeration, Thermoelectric cooling; Transcritical Carbon Dioxide	
	Compression Refrigeration; Cascade Refrigeration System; Linde and	
	Claude cycles, cryogenics and its engineering applications.	
4	6. Air Conditioning Concepts and Applications:	23 Hrs
	Psychrometry; Dry Air; Moist Air; Basic laws obeyed by Dry Air and	
	Moist Air; Psychrometric properties of air: Dry bulb, wet bulb and dew	
	point temperatures, Relative and specific humidity, degree of saturation	
	adiabatic saturation temperature, enthalpy of air and water vapours;	
	Psychrometric chart and its use; Adiabatic mixing of moist air streams	
	without condensation and with condensation; Numerical.	
	Human requirement of comforts; effective temperature and comfort	
	charts; Industrial and comfort air conditioning	
	Psychometric Processes:	
	Basic psychrometric processes; Sensible heat process; Latent heat	
	process; Total heat process; Sensible heat factor; Evaporative cooling;	
	cooling with dehumidification; Heating with dehumidification; chemical	
	dehumidification; By-pass factor; Contact factor; Psychrometric processes	
	in air conditioning equipment: Cooling coils, Heating coils, cooling and	
	dehumidification coils, Evaporative coolers, Adiabatic dehumidifiers,	
	Steam injection, Air washer; Numerical.	
	Calculations for Air conditioning Load and for Rate and state of Supply	
	Air:	
	Sources of heat load; sensible and latent heat load; Cooling and heating	
	load estimation; Apparatus dew point temperature; Rate and state of	
	supply air for air conditioning of different types of premises; Numerical	
	Refrigeration and Air Conditioning Equipment:	
	Brief description of compressors, condensers, evaporators and expansion	
	devices; Cooling towers; Ducts; dampers; grills; air filters; fans; room air	
	conditioners; split units; Package and central air conditioning plants.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4702.1	Understand the basic concepts and principles of refrigeration and air
		conditioning systems
CO2	BTME-4702.2	Discuss different types of aircraft refrigeration system and their performances under different conditions
CO3	BTME-4702.3	To gain knowledge of refrigerants and factors influencing air conditioning
C04	BTME-4702.4	Study the importance of psychometric chart and along with processes and also determine the calculations related to air conditioning load

- 1. C.P. Arora, Refrigeration and Conditioning, Tata McGraw Hill. 2001
- 2. Manohar Prasad, Refrigeration and Conditioning, Wiley Eastern Limited.1998
- 3. Jordan and Priester, Refrigeration and Conditioning, Prentice Hall of India. 2008
- 4. W.F. Stoecker, Refrigeration and Conditioning, McGraw Hill.2010

Program Code: ME-301

SUBJECT TITLE: MECHANICAL VIBRATIONS

SUBJECT CODE: BTME-4703

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	1	0	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Introduction:	6 Hrs
	Basic concepts, Types of vibration, Periodic & Harmonic vibrations,	
	Methods of vibration analysis	
2	Vibration of Single Degree of Freedom System:	10 Hrs
	Undamped free vibrations, damped free vibrations and damped force	
	vibration system, Modelling of stiffness and damping (both viscous and	
	coulomb), estimation of damping by decay plots, vibration isolation	
	transmissibility, vibration measuring instruments.	
3	Two degrees of Freedom systems:	14 Hrs
	a) Principal modes of vibrations, natural frequencies, amplitude ratio,	
	undamped free, damped free, forced harmonic vibration, semi-definite	
	systems, combined rectilinear & angular modes; Lagrange's equation.	
	b) Application to un-damped and damped absorbers: Vibration absorber –	
	principle; centrifugal pendulum vibration absorber, torsional vibration	
	damper, untuned dry friction and viscous vibration damper, torsional	
	vibration abosrber.	
4	Multi-degree of freedom systems:	26 Hrs
	Undamped free vibrations, influence coefficients, Generalised coordinates,	
	orthogonality principal, matrix iteration method, Rayleigh and Dunkerley,	
	Holzer's, Stodola method, Eigen values and eigen vectors.	
	Continuous systems:	
	Lateral vibrations of a string, longitudinal vibrations of bars, transverse	
	vibrations of beams, Euler's equation of motion for beam vibration,	

natural frequencies for various end conditions, torsional vibration of	
circular shafts.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4703.1	Understand the basic concepts and principles of Vibrations, concept of
		damping and vibration measuring instruments systems
CO2	BTME-4703.2	To understand different types of absorber and their performances under
		different conditions
CO3	BTME-4703.3	To gain knowledge of various vibration equations and their factors
		influencing conditionality of situations
C04	BTME-4703.4	Analyze the multi degree freedom and continuous systems for the vibrating
		motion

- 1. G.K. Grover, Mechanical Vibrations Hem Chand and Bros. 2006
- 2. K.K. Purjara, Mechanical Vibrations, DhanpatRai and Sons, Delhi. 2008
- 3. V.P.Singh, Mechanical Vibrations DhanpatRai and Sons, Delhi. 2002
- 4. Debabrata Nag, Mechanical Vibration, John Wiley India.2012
- 5. Thomson, Mechanical Vibration, Prentice Hall. 2014

Program Code: ME-301

SUBJECT TITLE: REFRIGERATION AND AIRCONDITIONING LAB

SUBJECT CODE: BTME-4704

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Study of various elements of a vapour compression refrigeration system	2 Hrs
	through cut sections models / actual apparatus.	
2	Study and performance testing of domestic refrigerator.	2 Hrs
3	Study the performance testing of Electrolux refrigerator.	2 Hrs
4	Study and performance testing of an Ice plant.	2 Hrs
5	Calculation/ Estimation of cooling load for a large building.	2 Hrs
6	Visit to a central Air conditioning plant for study of processes for winter	2 Hrs
	and summer air conditioning	
7	Visit to a cold storage for study of its working.	2 Hrs
8	Study and performance testing of window type room air conditioner.	2 Hrs
9	Study and performance testing of water cooler.	2 Hrs

CO1	BTME-4704.1	Demonstrate the different parts of domestic refrigerator and brief its importance
CO2	BTME-4704.2	Analyze the performance of various vapour compression cycles
CO3	BTME-4704.3	Discuss the various components of air conditioner setup and analyze its performance index
C04	BTME-4704.4	Visit of central air conditioned plant and cold storage plant for its practicality

Program Code: ME-301

SUBJECT TITLE: MECHANCIAL VIBRATION LAB

SUBJECT CODE: BTME-4705

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

S.	Contents	Contact Hrs
No.		
1	Determine the viscosity of given fluid by single wire torsional pendulum.	2 Hrs
2	Determine the natural frequencies of a coupled pendulum.	2 Hrs
3	Find out the fundamental natural frequency of a cantilever beam	2 Hrs
4	Determine the modulus of elasticity from free vibration test	2 Hrs
5	Study of forced vibration of a two degree of freedom system under	2 Hrs
	harmonic excitation	
6	Study of a dynamic absorber	2 Hrs
7	Determine coefficient of dry friction from measurement of natural	2 Hrs
	frequency of vibration of a bar resting on two disks rotating in opposite	
	direction	

CO1	BTME-4705.1	Understand the importance of vibration in mechanical components
CO2	BTME-4705.2	To determine the natural frequency of coupled pendulum and cantilever beam
CO3	BTME-4705.3	Analyze the forced vibration of two degree of freedom under SHM
C04	BTME-4705.4	Evaluate the co-efficient of friction of the mechanical systems along with its calculations

Program Code: ME-301

SUBJECT TITLE: MAJOR PROJECT

SUBJECT CODE: BTME-4706

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	2	1

Internal Assessment: 60 End Term Exam: 40

In this student has to build a project and has to make a file for the same.

CO1	BTME-4706.1	Design and development of your project work as per the objectives
CO2		To implement the actual working of your project as per the industrial relevancy
		5
CO3	BTME-4706.3	Discuss the relevant conclusion and scope of future work of you project
C04	BTME-4706.4	Prepare for your project work file and seminar ppt. report

(OPEN ELECTIVE-II)

SUBJECT TITLE: HUMAN RESOURCE MANAGEMENT

SUBJECT CODE: BTME-4720

SEMESTER: 7th

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction:	10 Hrs
1	Introduction to Human Resource Management and its definition,	10 1115
	functions of Human Resource Management & its relation to other	
	managerial functions. Nature, Scope and Importance of Human Resource	
	Management in Industry, Role & position of Personnel function in the	
	organization.	
	Procurement and Placement:	
	Need for Human Resource Planning; Process of Human Resource	
	Planning; Methods of Recruitment; Psychological tests and interviewing;	
	Meaning and Importance of Placement and Induction, Employment	
	Exchanges (Compulsory Notification of vacancies) Act 1959, The	
	Contract Labour (Regulation & Abolition) Act 1970.	
2	Training & Development:	8 Hrs
	Difference between training and Development; Principles of Training;	
	Employee Development; Promotion-Merit v/s seniority Performance	
	Appraisal, Career Development & Planning.	
	Job analysis & Design:	
	Job Analysis: Job Description & Job Description, Job Specification.	_
3	Job Satisfaction:	8 Hrs
	Job satisfaction and its importance; Motivation, Factors affecting	
	motivation, introduction to Motivation Theory; Workers ' Participation,	

	Quality of work life.	
	The Compensation Function:	
	Basic concepts in wage administration, company's wage policy, Job	
	Evaluation, Issues in wage administration, Bonus & Incentives, Payment	
	of Wages Act-1936, Minimum Wages Act-1961	
4	Integration:	14 Hrs
	Human Relations and Industrial Relations; Difference between Human	
	Relations and Industrial Relations, Factors required for good Human	
	Relation Policy in Industry; Employee Employer relationship Causes and	
	Effects of Industrial disputes; Employees Grievances & their Redressal,	
	Administration of Discipline, Communication in organization,	
	Absenteeism, Labour Turnover, Changing face of the Indian work force	
	and their environment, Importance of collective Bargaining; Role of trade	
	unions in maintaining cordial Industrial Relations.	
	Maintenance:	
	Fringe & retirement terminal benefits, administration of welfare	
	amenities, Meaning and Importance of Employee Safety, Accidents-	
	Causes & their Prevention, Safety Previsions under the Factories Act	
	1948; Welfare of Employees and its Importance, Social security, Family	
	Pension Scheme, ESI act 1948, Workmen's Gratuity Act 1972, Future	
	challenges for Human Resource Management.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4720.1	Develop the understanding of the concept of human resource management and to understand its relevance in organizations
CO2	BTME-4720.2	Develop necessary skill set for application of various HR issues
CO3	BTME-4720.3	Analyze the strategic issues and strategies required to select and develop manpower resources
C04	BTME-4720.4	Integrate the knowledge of HR concepts to take correct business decisions

- 1. T.N. Chhabra- Human Resource Management (DhanpatRai& Co.) 2010
- 2. A.P Verma- Human Resource Management (S.K Kataria & Sons) 2008

(OPEN ELECTIVE-II)

SUBJECT TITLE: OPERATION RESEARCH

SUBJECT CODE: BTME-4720

SEMESTER: 7th

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction: Introduction to Operations Research: Basics definition, scope, objectives, phases, models and limitations of Operations Research. Linear Programming Problem – Formulation of LPP, Graphical solution of LPP. Simplex Method, Artificial variables, Big-M method, two-phase method, degeneracy and unbound solutions.	8 Hrs
2	Transportation Problem: Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method. Assignment Model: Formulation. Hungarian method for optimal solution. Solving unbalanced problem. Traveling salesman problem and assignment problem. Sequencing Models: Solution of Sequencing Problem—Processing n Jobs through 2 Machines—Processing n Jobs through 3 Machines – Processing 2 Jobs through m machines—Processing n Jobs through m Machines.	12 Hrs
3	Dynamic Programming: Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems, Game Theory: Competitive games, rectangular games, saddle point, minimax (maxim in) method of optimal strategies, value of the game.	12 Hrs

	Solution of games with saddle points, dominance principle. Rectangular	
	games without saddle point – mixed strategy for 2 X 2 games.	
4	Replacement Models: Replacement of Items that Deteriorate whose	10 Hrs
	maintenance costs increase with time without change in the money value.	
	Replacement of items that fail suddenly: individual replacement policy,	
	group replacement policy.	
	Inventory Models: Inventory costs. Models with deterministic demand—	
	model (a) demand rate uniform and production rate infinite, model (b)	
	demand rate non-uniform and production rate infinite, model (c) demand	
	rate uniform and production rate finite.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4720.1	Solve linear programming problems using appropriate techniques and optimization solvers, interpret the results obtained
CO2	BTME-4720.2	Determine optimal strategy for Minimization of Cost of shipping of products from source to Destination/ Maximization of profits of shipping products using various methods, Finding initial basic feasible and optimal solution of the Transportation problems
CO3	BTME-4720.3	Model competitive real-world phenomena using concepts from game theory. Analyse pure and mixed strategy games
C04	BTME-4720.4	Formulate Network models for service and manufacturing systems, and apply operations research techniques and algorithms to solve these Network problems

- 1. P. SankaraIyer, 'Operations Research', Tata McGraw-Hill. 2006
- 2. A.M. Natarajan, P. Balasubramani, A. Tamilarasi, 'Operations Research', <u>Pearson</u> Education.2008
- 3. J.K. Sharma, 'Operations Research Theory & Applications,' Macmillan India Ltd. 2012
- 4. P.K. Gupta and D.S. Hira, 'Operations Research', S. Chand & Co. 1998
- 5. J.K. Sharma., 'Operations Research, Problems and Solutions', 3rdEdn., Macmillan India Ltd. 2012

(OPEN ELECTIVE-II)

SUBJECT TITLE: MATERIAL MANAGEMENT

SUBJECT CODE: BTME-4720

SEMESTER: 7th

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No.		
1	Introduction: Meaning, definition, functions of materials management, Concept of	4 Hrs
	integrated material management, Relationship of material management with other Organizational functions.	
2	Material Planning & Budgeting:	6 Hrs
	Need for material planning, Factors affecting material planning,	
	Techniques of material planning, Material classification, codification and	
	standardization, Material budgeting - meaning and need, techniques of	
	material budgeting.	
3	Inventory Control:	22 Hrs
	Need and meaning of inventory, types of inventory, functions of	
	inventory control, Inventory costs, Inventory control tool - ABC, VED,	
	XYZ and FSN: Economic order Quantity and replenishment of stocks.	
	Physical control of inventory: Fixed order, Two bin and Kardex systems	
	Material requirement planning (MRP-I) Spare parts control for	
	maintenance purposes. Evaluation of inventory control performance.	
	Concept of Just-in-Time(JIT). Use of computers for inventory control	
	Purchasing:	
	Purchasing principles, procedures and systems, Functions of purchasing,	

	Make-or-buy decision, Vendor development and vendor rating. Factors affecting purchase decisions, Legal aspects of purchasing,	
	Documentation and procedure for import.	
4	Storage:	8 Hrs
	Functions and importance of store keeping, types of stores, store	
	accounting and store verification, Legal aspects of store keeping,	
	Management of surplus, scrap and obsolete items. Importance of material	
	handling in store keeping, handling equipment.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4720.1	Identifying the scope for integrating materials management function over the logistics and supply chain operations
CO2	BTME-4720.2	Identify, study, compare, and evaluate alternatives, select and relate with a good supplier
CO3	BTME-4720.3	Analyzing the materials in storage, handling, packaging, shipping distributing and standardizing.
C04	BTME-4720.4	Integrate important materials functions to both products and services & use MRP,ERP,& PLM managing materials

- 1. M.M. Verma, Materials Management, S. Chand and Co. 2010
- 2. Gopal Krishnan and Sundaresan, Material Management An Integrated Approach, Prentice Hall.2006
- 3. Dobbler and Burt, Purchasing and materials management, Tata McGraw Hill.2008
- 4. M. Starr and D. Miller, Inventory control, Prentice Hall.2012

(OPEN ELECTIVE-II)

SUBJECT TITLE: SOLAR ENERGY

SUBJECT CODE: BTME-4720

SEMESTER: 7th

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact Hrs
No. 1	Introduction: Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements	10 Hrs
2	Solar Energy: Solar radiation - beam and diffuse radiation; earth sun angles, attenuation and measurement of solar radiation; Optical properties of materials and selective surfaces; Principles, general description and design procedures of flat Platte and concentrating collectors; Performance analysis of cylindrical and parabolic collectors; Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries; economic analysis of solar systems.	7 Hrs
3	Wind Energy: Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of accodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection	10 Hrs

	considerations.	
4	Direct energy conversion systems:	8 Hrs
	Magnetic Hydrodynamic (MHD) Generator: gas conductivity and	
	MHD equations; operating principle, types and working of different	
	MHD systems – their relative merits; MHD materials and production of	
	magnetic fields.	
	Thermo-electric generators: Thermo-electric effects and materials;	
	thermo-electric devices and types of thermo-electric generators;	
	thermo-electric refrigeration.	
	Thermionic generators: thermoionic emission and materials; working	
	principle of thermionic Fuel Cells: thermodynamic aspects; types,	
	components and working of fuel cells	
	Performance, applications and economic aspects of above mentioned	
	direct energy conversions systems.	
5	Miscellaneous Non-Conventional energy Systems:	10 Hrs
	Bio-mass: Concept of bio-mass conversion, photo-synthesis and bio-	
	gasification; Bio gas generators and plants - their types constructional	
	features and functioning; digesters and their design; Fuel properties of	
	bio gas and community bio gas plants	
	Geothermal: Sources of geothermal energy - types, constructional	
	features and associated prime movers.	
	Tidal and wave energy: Basic principles and components of tidal and	
	wave energy plants; single basin and double basin tidal power plants;	
	conversion devices Advantages/disadvantages and applications of	
Ì	above mentioned energy systems.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4720.1	Conceptual knowledge of the technology, economics and regulation related
		issues
		associated with solar power development and management
CO2	BTME-4720.2	Ability to analyse the viability of solar power projects
CO2	DTME 4700.2	C 1 Tr 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CO3	BTME-4720.3	Capability to integrate various options and assess the business and policy environment regarding solar power projects
C04	BTME-4720.4	Advocacy of strategic and policy recommendations on usage of solar power

- 1. H.P. Garg and Jai Prakash, Solar Energy: Fundamentals and Applications, Tata McGraw Hill.
- 2. S.P. Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill.
- 3. John A. Duffic and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley.

Program Code: ME-301

(OPEN ELECTIVE-II)

SUBJECT TITLE: OPTIMIZATION TECHNIQUES

SUBJECT CODE: BTME-4720

SEMESTER: 7th

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction: Historical Development; Engineering applications of Optimization; Optimization techniques – classical and advanced techniques. Art of Modeling Origin of OR and its role in solving industrial problems: General approach for solving OR problems. Classification of mathematical models: various decision making environments.	10 Hrs
2	Linear Programming: Formulation of linear mathematical models: Graphical and simplex techniques for solution of linear programming problems, Motivation of simplex method, Simplex algorithm and construction of simplex tableau; Simplex criterion; Minimization versus maximization problems, Big-M method and two phase method, Introduction to duality theory and sensitivity analysis.	7 Hrs
3	Transportation and Assignment Models: Various initial basic feasible solutions methods, Optimization of transportation and assignment using different methods considering the concept of time and cost function. Dynamic Programming: Characteristics of dynamic programming problems, deterministic dynamic programming, and probabilistic dynamic programming. Queuing Theory: Basic structure of queuing model, Types of queuing situation: Queuing models with Poisson's input and exponential service, their application to simple situations.	20 Hrs

4	Network Models: Shortest route and traveling sales man problems,	8 Hrs
	PERT & CPM, analysis of time bound project situations, construction of	
	networks, identification of critical path, slack and float, crashing of	
	network for cost reduction.	
	Non-linear Programming Models: Graphical illustration to non-linear	
	programming problems, introduction to different types of non-linear	
	programming problems. Problems related to the topic.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4720.1	Recall the theoretical foundations of various issues related to linear programming modeling to formulate real-world problems as a L P model
CO2	BTME-4720.2	Demonstrate the optimized material distribution schedule using transportation model to minimize total distribution cost.
CO3	BTME-4720.3	Identify appropriate equipment replacement technique to be adopted to minimize maintenance cost by eliminating equipment break-down
C04	BTME-4720.4	Demonstrate the various selective inventory control models to analyse and optimize inventory systems.

- 1. H.A. Taha, 'Operations Research', Prentice Hall of India, New Delhi.
- 2. H.M. Wagner, 'Principles of Operations Research', Prentice Hall.
- 3. P.K. Gupta and D.S. Hira, 'Operations Research', S. Chand & Co.

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: AUTOMOTIVE CONTROL

SUBJECT CODE: BTME-4711

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.No.	Contents	ContactHrs
1	Introduction of Common Technology: Engine related systems. Ignition system, computer controlled petrol fueling injection systems, Engine management systems, Anti-lock braking systems, Traction control system, Stability Control system, air conditioning, computer controlled diesel engine system.	8 Hrs
2	Computer ECM: Fundamental parts of computer, Principles of operation, Computer data, Computer interfaces, Computer memories, Adaptive operating strategy of the ECM.	7 Hrs
3	Digital Electronics: Logic gates, truth tables, Application of Logic gates, Flip-Flop, Analogue to Digital Conversion, Digital to Analogue conversion, Digital Displays (LED Display and Liquid crystal displays).	8 Hrs
4	Sensors: Introduction of sensors and transducers Electromagnetic Sensors, Optical sensors, variable resistance type sensors, temperature sensors, Pressure sensors, variable capacitance sensors, Flow sensors, Piezoelectric sensors, Oxygen Sensor, Practical Importance of sensors.	8 Hrs
5	Actuators: Introduction of Actuators, Actuators operation, Injectors, Exhaust gas recirculation actuators, motors, Solenoids, ABS actuators.	4 Hrs
6	Additional Technology: Computer performance, Supplementary restraint systems (SRS),Coded ignition key, Fault tracing, Precautions when working with computer controlled system.	5 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4711.1	To understand the principles and working of different systems of automobiles
CO2	BTME-4711.2	To understand the principles and design of different systems of automobiles
CO3	BTME-4711.3	To understand the principles and working of Microprocessor based automobiles.
C04	BTME-4711.4	To understand the principles and working of sensors and actuators.

- 1. Allan W.M. Bonnick, 'Automotive Computer Controlled Systems', Butterworth-Heinemann: A Division of Reed Educational and Professional Publishing Ltd.
- 2. Willium B. Ribbens, 'Understanding Automotive Electronics', Elsevier Science, 2003.
- 3. Ronald K. Jurgen, 'Sensors and Transducers', SAE, 2003.
- 4. Jack Erjavec, 'Automotive Technology' Robert Scharff Delmar Publications Inc., 1992.

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: NON TRADITIONAL MACHINING

SUBJECT CODE: BTME-4712

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction: Latest trends in Manufacturing, Introduction to Flexible manufacturing system, Introduction to computer integrated manufacturing, Limitations of conventional machining processes, Development of Non-conventional machining processes, their classification, advantages and major applications.	5 Hrs
2	Advanced Mechanical Processes: Ultrasonic machining, Water Jet Machining and Abrasive Flow Machining-elements of process, Applications and limitations	10 Hrs
3	Electrochemical & Chemical Removal Processes: Principle of operation, elements and applications of Electrochemical Machining, Electrochemical grinding, Electrochemical deburring, Electrochemical honing, Chemical Machining, Photochemical machining.	10 Hrs
4	Thermal Metal Removal Processes: Electric Discharge Machining- Mechanism of metal removal, electrode feed control, die electric fluids flushing, selection of electrode material, applications. Plasma Arc Machining- Mechanism of metal removal, PAM parameters, Equipment's for unit, safety precautions and applications. Laser Beam machining- Material removal, limitations and advantages. Hot machining- method of heat, Applications and limitations. Electon-Beam Machining-, Generation and control of electron beam, process	15 Hrs

capabilities and limitations.	
Hybrid Machining Processes:	
Concept, classification, application, Advantages	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4712.1	Students will be able to categorize different material removal, joining processes as per the requirements of material being used to manufacture end product.
CO2	BTME-4712.2	Students will be able to select material processing technique with the aim of cost reduction, reducing material wastage & machining time.
CO3	BTME-4712.3	Students will be able to combine & develop novel hybrid techniques from the state of art techniques available.
C04	BTME-4712.4	Students will be able to perform process analysis taking into account the various responses considered in a process.

- 1. P.C. Panday and H.S. Shan, Modern Machining Processes, Tata McGraw Hill. 1998
- 2. G. Boothroyd and W.A. Knight, Fundamentals of Machining and Machine Tools, Marcel Dekker Inc.2006
- 3. G.F. Benedict, Non-traditional Manufacturing Processes, Marcel Dekker Inc. 2006
- 4. V.K Jain, Advanced Machining Processes, Allied Publishers.2000
- 5. Hassan Abdel, Gawad El-hofy Fundamentals of Machining Processes: Conventional and Nonconventional Processes, Taylor & Francis. 2008

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: INDUSTRIAL TRIBOLOGY

SUBJECT CODE: BTME-4713

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

Contents of Syllabus

S. No.	Contents	Contact Hrs
1	Introduction:	5 Hrs
1	Tribological considerations, Nature of surfaces and their contact, Physical, mechanical properties of surface layer, Geometrical properties of surfaces, methods of studying surfaces, Study of contract of smoothly and rough surfaces	31113
2	Friction and Wear:	10 Hrs
	Role of friction and laws of static friction, causes of friction, adhesion	
	theory, Laws of rolling friction, Friction of metals and non-metals; Friction	
	measurements. Definition of wear, mechanism of wear, friction affecting	
	wear, wear measurement, Wear of metals and non-metals.	
3	Lubrication and Lubricants:	10 Hrs
	Introduction, dry friction, Boundary lubrication, classic hydrodynamics,	
	hydrostatic and elasto hydrodynamic lubrication, Functions of lubricants,	
	Types of lubricants and their industrial uses, properties of liquid and grease	
	lubricants; lubricant additives, general properties and selection.	
4	Special Topics:	15 Hrs
	Selection of bearing and lubricant, bearing maintenance, diagnostic	
	maintenance of tribological components, lubrication systems, Filters and filtration.	

CO1	BTME-4713.1	The basic objective of the subject is to deal fundamentals of friction, wear and lubrication
CO2	BTME-4713.2	The subject is useful in understanding the nature of surfaces of engineering materials.
CO3	BTME-4713.3	The basic objective of the subject is to learn about types of lubricants.
C04	BTME-4713.4	The subject is useful in understanding the various tribological applications.

- 1. O'Conner and Royle, Standard Hand Book of Lubrication Engg., McGraw Hill.2004
- 2. Halling and Wykeham, Introduction to Tribology, Publications Ltd.2008
- 3. RaymonoO.Gunther, Lubrication, Bailey Bros and Swinfan Ltd.2010
- 4. PT Barwll, Rearing Systems, Principles and Practice,Oxford press.2006
- 5. A Cameron, Basic Lubrication Theory, Wiley (Indian Edition).2008

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: FINITE ELEMENT METHODS

SUBJECT CODE: BTME-4714

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

Contents of Syllabus

S.	Contents	Contact
No.		Hrs
1	Introduction:	5 Hrs
	Finite Element Method for solving field problems. Stress and Equilibrium.	
	Strain -Displacement relations. Stress - strain relations.	
2	One Dimensional Problems: Finite element modeling coordinates and	10 Hrs
	shape functions. Potential Energy approach: Assembly of Global stiffness	
	matrix and load vector. Finite element equations, Treatment of boundary	
	conditions, Quadratic shape functions.	
3	Analysis of Beams: Element stiffness matrix for two node, two degrees	10 Hrs
	of freedom per node beam element.	
	Finite element modelling of two dimensional stress analysis with	
	constant strain triangles and treatment of boundary conditions. Finite	
	element modelling of Axisymmetric solids subjected to Axis ymmetric	
	loading with triangular elements.	
4	Two dimensional four noded isoparametric elements and numerical	15 Hrs
	integration. Steady state heat transfer analysis: one dimensional analysis of	
	a fin and two dimensional analysis of thin plate. Analysis of a uniform shaft	
	subjected to torsion. Dynamic Analysis: Formulation of finite element	
	model, element matrices, evaluation of Eigen values and Eigen vectors for a	
	stepped bar and a beam.	

CO1	BTME-4714.1	The basic concepts of Finite Element methods and its applications to
		complex engineering
		problems
CO2	BTME-4714.2	The characteristics and selection of different finite elements used in finite
		element methods
CO3	BTME-4714.3	The equilibrium equations and stress-strain relations for different boundary
		conditions
		encountered in structural and heat transfer continuum problems
C04	BTME-4714.4	The application of the FEM technique to dynamic problems and validate the
		solutions through simulation software for real time applications

- 1. Chandraputla Ashok and Belegundu, 'Introduction to Finite Elements in Engineering', Prentice -Hall.
- 2. S.S. Rao, 'The Finite Element Methods in Engineering', Pergamon.
- 3. J.N. Reddy, 'An Introduction to Finite Element Method', McGraw Hill.
- 4. Alavala, 'Finite Element Methods', TMH.
- 5. Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith and Ted G. Byrom, 'The Finite Element Method for Engineers', John Wiley & Sons. (ASIA) Pte Ltd
- 6. C.S. Krishna Murthy, 'Finite Element Analysis'.

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: STATISTICAL QUALITY CONTROL

SUBJECT CODE: BTME-4715

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction: Definition and Need of quality, Aspects of quality, Quality characteristic, Quality specification, Quality function, Economics of quality. Inspection, Its objectives and types, Inspection versus Quality Control, Statistical Quality Control, its Tools, Advantages, limitations and Applications. Probability & Statistics: Definition, Laws, Probability Distributions (Normal Binomial, Poisson, Exponential) & related problems. Measures of Central tendency & Dispersion, Concept of Variation, Variable and attribute data, Frequency distribution.	10 Hrs
2	Control Charts: Concept of variability, Assignable and chance causes, Concept of specifications and tolerances, Definition and objectives of control charts, Control charts for variables and attributes and related problems, Variable charts vs attribute charts, Patterns on control charts, Type–I & Type-II Errors, Process capability and its methods of determination.	10 Hrs
3	Acceptance Sampling: Definition, Advantages over 100% inspection, Methods of taking samples, Operating characteristics curve & its characteristics. Single, Double and Multiple, Sequential Sampling Plan & Related problems. Quality Assurance: Need, Principles, Essentials and Advantages of Quality Assurance System, Quality Manual, Field complaints, Quality Audit & its	10 Hrs

	types, Quality Assurance Methods, Quality Control vs. Quality Assurance.		
4	Quality Systems: Description of ISO: 9000 series of standards, ISO: 9001–2000 Systems. Description of TQM, Concept of Quality Circles, JIT		
	System, Taguchi's Concept of Quality, Zero Defect Concept, 6s Concept and 5S.		

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4715.1	Understand the philosophy and basic concepts of quality improvement
CO2	BTME-4715.2	Demonstrate the ability to use the methods of statistical process control
CO3	BTME-4715.3	Demonstrate the ability to design, use, and interpret control charts for attribute
C04	BTME-4715.4	Design, use, and interpret exponentially weighted moving average and moving average control charts.

- 1. M. Mahajan, 'Statistical Quality Control', DhanpatRai& Co.
- 2. AmitavMitra, 'Fundamentals of Quality Control', Pearson Education.
- 3. E.L. Grant & R.S. Leavenworth, 'Statistical Quality Control', McGraw Hill & Co.
- 4. Feigenbaum, 'Total Quality Control', McGraw Hill & Co.
- 5. D.C. Montgomery DC, 'Introduction to Statistical Quality Control', John Wiley & Sons Inc.
- 6. Stephan B. Vardeman, J. Marcus Jobe, 'Statistical QA Methods for Engineers', John Wiley & Sons Inc.
- 7. J.R. Taylor, 'Quality Control systems', McGraw Hill Int. Education.

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: ADDITIVE MANUFACTURING

SUBJECT CODE: BTME-4716

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S.	Contents	Contact			
No.		Hrs			
1	Introduction to Rapid Prototyping: Classification of Manufacturing	10 Hrs			
	Processes, Introduction to Rapid Prototyping and Additive Manufacturing,				
	History of development of RP, Engineering design process, Rapid				
	Prototyping and its Impact, Product development, Product Prototyping and				
	Product Development Product Prototyping: Need of Product Prototyping, Prototype Planning and				
	Management, Product and Prototype Cost Estimation, Prototype Design				
	Methods and tools				
2	CAD Modeling: Geometrical Modelling Techniques, Wireframe Modelling,	5 Hrs			
	Surface Modelling and solid modeling, Slicing methods and software				
3	Rapid Prototyping Processes: Rapid Prototyping Overview, Rapid	10 Hrs			
	Prototyping Procedure, Liquid-Based RP Processes, Solid-Based RP				
	Processes, Powder-Based RP Processes, Prototyping Materials, Modeling of				
	Material Properties, Modeling and Design of Materials and Structures.				
	Direct Digital Prototyping and Manufacturing: Solid Models and				
	Prototype Representation, Reverse Engineering for Digital				
	Representation, Prototyping and Manufacturing Using CNC Machining,				
	Fully Automated Digital Prototyping and Manufacturing.				
4	Direct Methods for Rapid Tool Production: Classification of Direct Rapid	15 Hrs			
	Tool Methods, Direct ACESTM Injection Moulds, Laminated Object				
	Manufactured (LaM) Tools, DTM Rapid Tool, Sand Form, EOS Direct				

Tool Process, Direct Metal Tooling using 3Dp.	
Applications of Rapid Prototyping: Functional Models, Rapid Tooling,	
Rapid Manufacturing, Engineering Applications, Medical Model, and Art	
Models, Engineering Analysis Models. Indirect Methods for Rapid Tool	
Production: Metal Deposition Tools, RTV Tools, Epoxy Tools, Ceramic	
Tools, Cast Metal Tools, Investment Casting, Fusible Metallic Core, Sand	
Casting, Keltool Process.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4716.1	To introduce students the basics of additive manufacturing/rapid	
		prototyping and	
		its applications in various fields, reverse engineering techniques	
CO2	BTME-4716.2	Demonstrate the knowledge of Additive Manufacturing and Rapid	
		Prototyping technologies	
CO3	BTME-4716.3	Describe different RP techniques	
C04	BTME-4716.4	Discuss fundamentals of Reverse Engineering	

- 1. Frank W. Liou, 'Rapid Prototyping and engineering Applications', CRC Press, 2007.
- 2. D.T. Pham and S.S. Dimov, 'Rapid Manufacturing', Springer.
- 3. Kevin Otto, Kristin Wood, 'Product Design', Pearson

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: AUTOMOTIVE AERODYNAMICS

SUBJECT CODE: BTME-4717

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	ContactHrs
1	Introduction: Scope, historical developments, fundamentals of fluid mechanics, flow phenomenon related to vehicles, external and Internal flow problem, resistance to vehicle motion, performance, fuel consumption and performance potential of vehicle aerodynamics, engine cooling requirement, air flow to passenger compartment, duct for air conditioning, cooling of transverse engine and rear engine.	10 Hrs
2	Aerodynamic drag of Cars: Cars as a bluff body, flow field around car, drag force, types of drag force, analysis of aerodynamic drag, drag coefficient of cars, strategies for aerodynamic development, low drag profiles	5 Hrs
3	Shape Optimization of Cars: Front end modification, front and rear wind shield angle, boat tailing, hatch back, fast back and square back, dust flow patterns at the rear, effects of gap configuration, effect of fasteners.	10 Hrs
4	Vehicle Handling: Origin of forces and moments on a vehicle, lateral stability problems, methods to calculate forces and moments – vehicle dynamics under side winds, the effects of forces and moments, characteristics of forces and moments, dirt accumulation on the vehicle, wind noise, drag reduction in commercial vehicles	15 Hrs

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4717.1	Apply CFD to a range of problem	
CO2	BTME-4717.2	Understand lift, drag and down force definitions and calculations.	
CO3		Demonstrate a knowledge and understanding of aerodynamics in automotive field.	
C04	BTME-4717.4	4 Understand the principles and functions of wind tunnel.	

- 1. Frank W. Liou, 'Rapid Prototyping and engineering Applications', CRC Press, 2007.
- 2. D.T. Pham and S.S. Dimov, 'Rapid Manufacturing', Springer.
- 3. Kevin Otto, Kristin Wood, 'Product Design', Pearson.

(DEPARTMENTAL ELECTIVE-III)

SUBJECT TITLE: ELECTRIC AND HYBRID VEHICLES

SUBJECT CODE: BTME-4718

SEMESTER: 7

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
3	0	0	3

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

S. No.	Contents	Contact Hrs
1	Introduction to Electric Vehicle (EV) & Hybrid Vehicle(HV): A brief history of Electric and Hybrid vehicles, basic architecture of hybrid drive train and analysis of series drive train, vehicle motion and the dynamic equations for the vehicle, types of HV and EV, advantages over conventional vehicles, limitations of EV and HV, impact on environment of EV and HV technology, disposal of battery, cell and hazardous material and their impact on environment	10 Hrs
2	Power Management and Energy Sources of EV and HV: Power and Energy management strategies and its general architecture of EV and HV, various battery sources, energy storage, battery based energy storage and simplified models of battery, Battery Management Systems (BMS), fuel cells, their characteristics and simplified models, Super capacitor based energy storage, its analysis and simplified models, flywheels and their modeling for energy storage in HV/BEV, hybridization of various energy storage devices, Selection of the energy storage technology. Power Electronics in EV & HV: Introduction, various power electronics converter topologies and its comparisons, Control of convertor operations in EV and HV, battery chargers used in EV & HV, emerging power electronic	5 Hrs

	devices.	
3	DC and AC Machines & Drives in EV & HV:	10 Hrs
	Various types of motors, selection and size of motors, Induction	
	motor drives and control characteristics, Permanent magnet	
	motor drives and characteristics, Brushed& Brushless DC motor	
	drive and characteristics, switched reluctance motors and	
	characteristics, IPM motor drives and characteristics,	
	mechanical and electrical connections of motors.	
4	Components & Design Considerations of EV & HV:	15 Hrs
•	Design parameters of batteries, ultra-capacitors and fuel cells,	10 1115
	aerodynamic considerations, calculation of the rolling resistance	
	and the grade resistance,	
	,	
	calculation of the acceleration force, total tractive effort, torque	
	required on the drive wheel, transmission efficiency, consideration	
	of vehicle mass, electric vehicle chassis& body design, general	
	issues in design, specifications and sizing of components Electric	
	and Hybrid Vehicles and Grid interconnection Issues:	
	Introduction to smart charging: Grid to vehicle and vehicle to grid,	
	smart metering and ancillary services, preliminary discussion on	
	vehicle to vehicle and vehicle to personal communication systems,	
	introduction to battery charging stations and its installation and	
	commissioning, preliminary discussion on estimation on station	
	capacity and associated technical issues, different connectors,	
	policy regulations and standards for EV and HV, BEE standards,	
	Indian and Global scenario, case studies	
	maian and Giovai sectiano, ease studies	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	BTME-4718.1	To deliver and discuss the about architecture, power electronics based drive control systems, battery management systems and grid integration issues of Electric and Hybrid vehicle
CO2	BTME-4718.2	Discuss the about battery management systems
CO3	BTME-4718.3	Discuss the about grid integration issues of Electric and Hybrid vehicle
C04	BTME-4718.4	Demonstrate different configurations of electric vehicles and its components, hybrid vehicle configuration by different techniques, sizing of components and design \ optimization and energy management

- 1. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2nd Edition, 2003.
- 2. James Larminie, John Lowry, "Electric Vehicle Technology", Wiley publications, 1Edition, 2003
- 3. B D McNicol, D A J Rand, "Power Sources for Electric Vehicles", Elsevier publications, 1st Edition, 1998.
- 4. Seth Leitman, "Build Your Own Electric Vehicle" MC Graw Hill, 1st Edition, 2013

SYLLABUS

SEMESTER-VIII

Program Name: B. Tech. Mechanical Engineering

Program Code: ME-301

SUBJECT TITLE: SOFTWARE TRAINING

SUBJECT CODE: BTME-4801

SEMESTER: 8

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	0	6

Internal Assessment: 100 End Term Exam: 200

In this the student has to do the software training and has to make a file for the same.

CO1	BTME-4801.1	Select the appropriate software such as Auto CAD, Solid Works, Ansys, etc.
CO2	BTME-4801.2	Design the individual parts followed by their respective assemblies.
CO3	BTME-4801.3	Analyze and design the industrial components as per their practical applications
C04	BTME-4801.4	Prepare for your software file and seminar ppt. report

Program Name: B. Tech. Mechanical Engineering

Program Code: ME-301

SUBJECT TITLE: INDUSTRIAL TRAINING

SUBJECT CODE: BTME-4802

SEMESTER: 8th

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
0	0	0	10

Internal Assessment: 200 End Term Exam: 300

In this the student has to do the industrial training and has to make a file for the same.

CO1	BTME-4802.1	To participate in ongoing and upcoming projects of the industry
CO2	BTME-4802.2	Determine the use of advanced techniques and machining tools
CO3	BTME-4802.3	Interact with industry personnel and follow the Engineering practices
C04	BTME-4802.4	Develop awareness about general workshop behavior and built a team skills