

SCHEME & SYLLABUS

(Choice Based Credit System)

for

M. TECH.

in

CAD/CAM & Robotics

(w.e.f. Session 2017-22)

Program Code: ME-401

DEPARTMENT OF MECHANICAL ENGINEERING SCHOOL OF ENGINEERING RIMT UNIVERSITY, MANDI GOBINDGARH, PUNJAB

TABLE OF CONTENTS

S. No.	Content	Page No.
1.	Section 1: Vision and Mission of the University	1
2.	Section 2: Vision and Mission of the Department	2
3.	Section 3: About the Program	3
4.	Section 4: Program Educational Objectives (PEOs), Program Outcomes (POs) and Program Specific Outcomes (PSOs)	4
5.	Section 5: Curriculum / Scheme with Examination Scheme	8
6.	Section 6: Detailed Syllabus with Course Outcomes	11

Vision & Mission of the University

VISION

To become one of the most preferred learning places a centre of excellence to promote and nurture future leaders who would facilitate in desired change in the society

MISSION

- M1: To impart teaching and learning through cutting edge technologies supported by the world class infrastructure
- M2: To empower and transform young minds into capable leaders and responsible citizens of India instilled with high ethical and moral values

Vision and Mission of the Department

VISION

To contribute to the society through excellence in scientific and technical education and research. To contribute the country by providing globally competent Mechanical Engineers capable of working in an inter-disciplinary environment which foster spirits of innovation, entrepreneurship and leadership. To support industry for growth, being the valuable resource for them, and remain a role model for others in the field of Mechanical Engineering.

MISSION

- M1: To provide a high-quality educational experience for undergraduate and graduate students that enables them to become leaders in their chosen professions and to make them globally competitive mechanical engineers.
- M2: To create, explore, and develop innovations in engineering and science through undergraduate and graduate research. To develop linkages with world class R&D organizations and educational institutions in India and abroad for excellence in teaching, research and consultancy practices.

About the Program

Mechanical Engineering Department was established in 2003 with the inception of the institute to produce high quality engineers in the field of Mechanical Engineering. The programme involves application of principles of physics for analysis, design, manufacturing, and maintenance of mechanical systems. It requires a solid understanding of key concepts including Mechanics, Kinematics, Thermodynamics and Energy. Mechanical engineers use these principles and others in the design and analysis of automobiles, aircraft, heating and cooling systems, manufacturing plants, industrial equipment and machinery, medical devices and more.

Program Educational Objectives (PEOs), Program Outcomes (POs) and Program Specific Outcomes (PSOs)

PROGRAMME EDUCATION OBJECTIVES (PEOs)

PEO1	To prepare learners with a solid foundation in mathematics, sciences, and technical
	skills needed to analyze and design in engineering problems.
PEO2	To be able to explore areas of research, application & innovation and make impact in
	different types of institutional settings such as corporate entities, government bodies,
	NGOs, inter-government organizations, & start-ups.
PEO3	To prepare learners to apply knowledge, strong reasoning, and quantitative skills to
	design and implement creative and sustainable solutions.
PEO4	To prepare learners to effectively use modern equipment's & programming tools to
	solve real life problems that are technically sound, economically feasible and socially
	acceptable.
PEO5	To prepare learners for successful professional career, to excel in higher studies and or
	to become entrepreneur.
PEO6	To be able to continuously learn and update one's knowledge, engage in lifelong
	learning habits and acquire latest knowledge to perform in current work settings.
PEO7	To prepare learners to become responsible citizens by serving the community locally,
	nationally, and internationally.

PROGRAMME OUTCOMES (POs)

PO 1	Apply the knowledge of mathematics, science, engineering fundamentals, and
	mechanical engineering to the solution of complex engineering problems.
PO 2	Identify, formulate, research literature, and analyze complex engineering problems
	reaching substantiated conclusions using first principles of mathematics, natural
	sciences, and engineering sciences
PO 3	Design solutions for complex mechanical engineering problems and design system
	components or processes that meet the specified needs with appropriate consideration
	for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Use research-based knowledge and research methods including design of experiments,
	analysis and interpretation of data, and synthesis of the information to provide valid
	conclusions.
PO 5	Create, select, and apply appropriate techniques, resources, and modern engineering
	and IT tools including prediction and modeling to complex mechanical engineering
	activities with an understanding of the limitations.
PO 6	Apply reasoning informed by the contextual knowledge to assess societal, health,
	safety, legal and cultural issues and the consequent responsibilities relevant to
	professional engineering practice.
PO 7	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge of, and need for sustainable
	development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and
	in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering
	community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.

PO 11	Demonstrate knowledge and understanding of the engineering and management
	principles and apply these to one's own work, as a member and leader in a team, to
	manage projects and in multidisciplinary environments.
PO 12	Recognize the need for, and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1	Apply n	nechanical	engineering	and	interdisciplinary	knowledge	for	analyzing,
	designing	g and manuf	acturing prod	ucts to	o address the needs	s of the socie	ty.	
	0 0		01				2	
PSO 2	Apply sta	ate of the ar	t tools and te	chniq	ues to conceptualiz	ze, design an	d intı	roduce new
	products,	, processes,	systems and s	ervice	es.			
	. ,	· 1 /	-					

Curriculum / Scheme with Examination Grading Scheme

SEMESTER WISE SUMMARY OF THE PROGRAMME: B.TECH. (MECHANICAL ENGINEERING)

S. No.	Semester	No. of Contact Hours	Marks	Credits
1.	Ι	16	500	16
2.	II	18	500	18
3	III	12	500	26
4	IV	-	100	20
	Total	46	1600	80

Marks Percentage Range	Grade	Grade Point	Qualitative Meaning
80-100	0	10	Outstanding
70-79	A^+	9	Excellent
60-69	А	8	Very Good
55-59	\mathbf{B}^+	7	Good
50-54	В	6	Above Average
45-49	С	5	Average
40-44	Р	4	Fail
0-39	F	0	Fail
ABSENT	AB	0	Fail

EXAMINATION GRADING SCHEME

Percentage Calculation: CGPA *10

First Semester:

Subject		Contact Hours/Wee k		Credi Contac t Hrs.		Evaluation Scheme (% of . Total Marks)			Exam Duratio n	
Code	Title	L	Т	Р			Interna l	Externa l	Total	(nours)
		С	ore	Cour	ses					
MTRM101	Research Methodology	4	-	-	4	4	40	60	100	3
MTME121	CAD/CAM	4	-	-	4	4	40	60	100	3
MTME122	Mechatronics	4	-	-	4	4	40	60	100	3
MTME181	Seminar	-	-	-	2	-	100	-	100	-
MTME138	Lab-I	-	-	4	2	4	60	40	100	-
	Total	12	-	4	16	16	280	220	500	9

Second Semester:

	Subject	Но	Cont urs/ k	tact Wee	Credi t	Contac t Hrs.	Evaluation Scheme (% of Total Marks)		Exam Duratio n (Hours)		
Code	Title	L	Т	Р			Interna l	Externa l	Total	(nours)	
Core Courses											
MTME123	Computer Aided Process Planning	4	-	-	4	4	40	60	100	3	
MTME124	Robotics	4	-	-	4	4	40	60	100	3	
MTME125	Optimization Technique	4	-	-	4	4	40	60	100	3	
MTME139	Lab- II	-	-	4	2	2	60	40	100	-	
		El	ectiv	e Co	urse						
MTME160	Product Life Cycle Management	4	-	-	4	4	40	60	100	3	
MTME161	Modeling and Simulation	4	-	-	4	4	40	60	100	3	
MTME162	Finite Element Methods	4	-	I	4	4	40	60	100	3	
MTME163	Operation Management	4	-	-	4	4	40	60	100	3	
	Total	16	-	4	18	18	220	280	500	12	

Third Semester:

	Subjec t		Contact Hours/Wee k		Credi	Contac	Ev Scho Tot	valuation eme (% al Marks	of s)	Exam Duratio n		
Code	Title	L	Т	Р	t	t Hrs.	Interna l	Externa l	Total	(Hours)		
Core Courses												
MTME126	Smart Materials and Applications	4	-	-	4	4	40	60	100	3		
MTME107	Manufacturing of Composite Materials	4	-	-	4	4	40	60	100	3		
MTME182	Pre Thesis Seminar	-	-	-	4	-	100	-	100	-		
MTME183	Project	-	-	-	10	-	60	40	100	-		
		El	ectiv	e Co	urse							
MTME164	Rapid Prototyping	4	-	-	4	4	40	60	100	3		
MTME165	Product Design and Development	4	-	-	4	4	40	60	100	3		
MTME166	Computer Integrated Manufacturing System	4	-	-	4	4	40	60	100	3		
MTME167	Industrial Automation	4	-	-	4	4	40	60	100	3		
	Total	12	-	-	26	12	280	220	500	9		

Fourth Semester:

Subjec t		Contact Hours/Wee k		Credi t	Contac t Hrs.	Evaluation Scheme (% of Total Marks)		Exam Duratio n (Hours)		
Code	Title	L	Т	Р			Interna	Externa	Total	(110015)
	ses		I	I						
MTME190	Thesis	-	-	I	20	-	-	100	100	-
	Total	-	-	-	20	-	-	100	100	-

SYLLABUS

SEMESTER-I

SUBJECT TITLE: RESEARCH METHODOLOGY SUBJECT CODE: MTRM-101 SEMESTER: 1 CONTACT HOURS/WEEK: Lecture (L) Tu

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60

Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of research i.e. meaning, definition, process and research design. The students should be able to understand the data collection methods, questionnaire designing, construction and sampling design & techniques.

S No.	Content	Contact
		Hrs.
1.	Introduction to Research: Meaning, Definition, Objective and Process	11 Hrs
	Research Design: Meaning, Types - Historical, Descriptive, Exploratory	
	and Experimental Research Problem: Necessity of Defined Problem,	
	Problem Formulation, Understanding of Problem, Review of Literature	
	Design of Experiment: Basic Principal of Experimental Design,	
	Randomized Block, Completely Randomized Block, Latin Square,	
	Factorial Design.	
	Hypothesis: Types, Formulation of Hypothesis, Feasibility, Preparation	
	and Presentation of Research Proposal	
2	Sources of Data: Primary and Secondary, Validation of Data	10 Hrs
	Data Collection Methods: Questionnaire Designing, Construction	
	Sampling Design & Techniques – Probability Sampling and	
	Non Probability Sampling Scaling Techniques: Meaning &	
	Types	
	Reliability: Test - Retest Reliability, Alternative Form Reliability,	
	Internal Comparison Reliability and Scorer Reliability	
	Validity: Content Validity, Criterion Related Validity and Construct	
	Validity	
3	Data Process Operations: Editing, Sorting, Coding, Classification and	11 Hrs
	Tabulation	
	Analysis of Data: Statistical Measure and Their Significance, Central	
	Tendency, Dispersion, Correlation: Linear and Partial, Regression:	
	Simple and Multiple Regression, Skewness, Time series Analysis, Index	
	Number	
	Testing of Hypothesis: T-test, Z- test, Chi Square, F-test, ANOVA	

4	Multivariate Analysis: Factor Analysis, Discriminant Analysis, Cluster	11 Hrs
	Analysis, Conjoint Analysis, Multi-Dimensional Scaling	
	Report Writing: Essentials of Report Writing, Report Format	
	Statistical Software: Application of Statistical Softwares like SPSS, MS	
	Excel, Mini Tab orMATLAB Software in Data Analysis	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTRM-101.1	Develop understanding on various kinds of research, objectives of doing research, research process, research designs and sampling.
CO2	MTRM-101.2	Have basic knowledge on qualitative research techniques
CO3	MTRM-101.3	Have adequate knowledge on measurement & scaling techniques as well as the quantitative data analysis
C04	MTRM-101.4	Have basic awareness of data analysis-and hypothesis testing procedure.

- 1. Statistics for Management by R.I. Levin and D.S. Rubin, 7thEdn., Pearson Education, New Delhi, 2007.
- 2. Marketing Research-An Applied Orientation by N.K. Malhotra, 4thEdn., Pearson Education, New Delhi, 2000.
- 3. Business Research Methods by Donald Cooper, Tata McGraw Hill, New Delhi, 2001.
- 4. Research Methodology in Social Sciences, Sadhu Singh, Himalaya Publishers, 2007.
- 5. Research Methodology Methods & Techniques by C.R. Kothari, 2ndEdn., New Age International Publishers, 2008.

SUBJECT TITLE: CAD/CAM SUBJECT CODE: MTME-121 SEMESTER: 1 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The students will understand the concept of graphic systems and standards and its interfacing for various geometric transformations in design engineering. The students should be able to understand various types of design processes for its transformation into wireframe models. They will also gain knowledge of parametric modeling techniques and different applications in mechanical engineering.

S No.	Content	Contact
1.	Introduction: Design process in general and using computers, hardware and software in CAD applications Two Dimensional Transformations: Two dimensional geometric transformations-basic transformations, concatenation, reflection, shear and transformations between coordinate systems.	Hrs. 10 Hrs.
2	Two and Three Dimensional Object representations: Parametric representation of synthetic curves, spline representations, cubic spline interpolation methods, Bezier curves and surfaces, B spline curves and surfaces, conversion between spline representations Representation of Solids: Half spaces, boundary representation (B-rep), sweep representation, constructive solid geometry (CGS), solid manipulations.	11 Hrs.
3	Three Dimensional Geometric Transformations: Tranformations- translation, rotation, scaling, reflections, shears, concatenation transformations Visual Realisation: Basic concepts of visual realization, hidden line removal, hidden surface removal, shading surfaces and solids CAD Standards:	11 Hrs.
4	CAD and CAM integration: Introduction to reverse engineering and rapid prototyping: Practice on available CAD packages, computer programming for geometric modelling of curves, surfaces & solids, projects involving assembly and kinematics analysis of mechanisms, surface modeling in	11 Hrs.

any available CAD package.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME-121.1	Understand the basic concepts OF CAD/CAM contents and tools,
CO2	MTME-121.2	Understand the history of CAD/CAM development, CAD/CAM market trends.
CO3	MTME-121.3	Understand mathematical representation of solids and geometrical transformations.

Suggested Readings / Books:

1. CAD/CAM by Groover and Zimmer, Prentice Hall, 2005.

2. CAD/CAM: Theory and Practice by I. Zeid, McGraw Hill, 2004.

3. Geometric Modeling by M.E. Mortenson, 2001.

SUBJECT TITLE: MECHATRONICS SUBJECT CODE: MTME-122 SEMESTER: 1 CONTACT HOURS/WEEK: Lea

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of control systems, microprocessor / micro controller based controllers, PC based controllers. The students will be able to understand the electromechanical drives: Relays and solenoids, stepper motors, DC brushed and brushless motors, DC servo motors, AC/DC motors for non-servo motion drives.

S No.	Content	Contact
		Hrs.
1.	Introduction: Definitions, trends, control systems, microprocessor / micro controller based controllers, PC based controllers, applications: SPM, robot, CNC machine, FMS, CIM. Sensor Technology: Sensor and transducers, terminology, displacement, position, proximity - encoders, velocity - tachogenerators, force - strain gauges, pressure, temperature-thermocouples, RTDs, thermistors, light sensors - photoelectric sensors, IR sensors, sensor selection.	9 Hrs.
2	Electronic Devices and Circuits: Semiconductor devices, diodes and LEDS, zener diodes and voltage regulator, inductive kick, bandwidth, frequency %& response of a measurement system, bipolar transistor circuits, amplifiers. Electromechanical Drives: Relays and solenoids, stepper motors, DC brushed and brushless motors, DC servo motors, AC / DC motors for non-servo motion drives, braking methods, pulse width modulated, Bipolar driver, Mosfet drives, SCR drives, variable frequency drives. Digital Electronics: Digital logic, number systems, logic gates, Boolean algebra, Karnaughrnaps, sequential logic	11 Hrs.
3	Signal Conditioning: Introduction, the operational amplifier, protection, filtering, Wheatstone bridge, digital signals, multiplexers, data acquisition, digital signal processing, pulse-modulation. Precision Mechanical Actuation: Pneumatic actuation systems, electro- pneumatic actuation systems, hydraulic actuation systems, electro- hydraulic actuation systems, mechanical systems, types of motion,	11 Hrs.

	kinematics, inverse kinematics, timing belts, ball screw and nut, linearmotion guides, linear bearings, harmonic transmission, bearings, motor / drive selection	
4	Microprocessors: Control, microcomputerstructure, microcontrollers, digital interfacing, analog interfacing, DAC, ADC, applications. Input / Output Systems: Interfacing, input / output ports, interface requirements, peripheral interface adapters, serial communication interface, direct memory access. Control System: System transfer function, Laplace transformation and its applications, continuous and discrete processes, proportional control, integral control, differential control, PID control, digital controllers, control system performance, controller tuning, adaptive control, frequency response, PLC, PMC, Introduction to fuzzy logic and neural networks.	11 Hrs.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME-122.1	Understand basic concepts of control systems, microprocessor / micro controller
CO2	MTME-122.2	Able to understand the electromechanical drives
CO3	MTME-122.3	Gain Knowledge of Signal Conditioning and Precision Mechanical Actuation

- 1. Understanding Electro-Mechanical Engineering An Introduction to Mechatronics by Kamm, Prentice-Hall of India.
- 2. Computer Control of Manufacturing system by, Koren, McGraw Hill.
- 3. Production Systems and CIM byGroover, PHI.
- 4. Flexible Manufacturing systems by Maleki, Prentice Hall.
- 5. Feedback Control Systems by BC. Kuo, PHI.

SUBJECT TITLE: SEMINAR SUBJECT CODE: MTME-181 SEMESTER: 1 CONTACT HOURS/WEEK:

Lecture (L) Tutorial (T) Practic		Practical (P)	Credit (C)
-	-	2	2

Internal Assessment: 100

Students has to prepare a ppt. along with file for any respective research topic

CO1	MTME181.1	Understand the potential of presenting through seminar
CO2	MTME181.2	Able to Understand the selection of topic and its presentation
CO3	MTME181.3	Understand the use of seminar at different areas and places

SUBJECT TITLE: OPTIMIZATION TECHNIQUE LAB (COMMON TO ALL)SUBJECT CODE: MTME-138SEMESTER: 1CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practical (P)CI

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
-	-	2	2

Internal Assessment: 60 End Term Exam: 40 Duration of Exam: 3 Hrs

S No.	Content	Contact
		Hrs.
1	Introduction to MATLAB and its environment	2 hrs
2	Basic MATLAB commands, data types	2 hrs
3	Programs for branching statement and loops	2 hrs
4	Program for inbuilt and user defined functions	2 hrs
5	Program for plots, arrays, input/outputs, etc.	2 hrs
6	Dynamics and Vibration using as a single degree vibratory system as a case study	2 hrs
7	Implement optimization for reducing an environment impact of mechanical engineering components	2 hrs
8	Implement optimization technique to find the optimal cost of structure weight/volume/both	2 hrs

CO1	MTME-138.1	Understand the potential of presenting through MATH Lab
CO2	MTME-138.2	Dynamics and Vibration using as a single degree vibratory system as a case study
CO3	MTME-138.3	Implement optimization technique to find the optimal cost of structure weight/volume/both

SYLLABUS

SEMESTER-II

SUBJECT TITLE: COMPUTER AIDED PROCESS PLANNING SUBJECT CODE: MTME123 SEMESTER: 2 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Pr

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of CAPP i.e. principles, scope and information requirement for CAPP. The students will be able to understand computer based process monitoring and control, computer and process interfacing.

S No.	Content	Contact
		Hrs.
1.	Introduction to CAPP: Principles, scope and information requirement for CAPP, Role of process planning, Manual and experienced based process planning, Advantages of CAPP over conventional process planning, Decision table and decision trees, process capability analysis, Tolerance analysis, Variant process planning, Generative approach, Forward and Backward planning.	9 Hrs.
2	Computer Aided Process Planning: Logical design of process planning systems, Implementation considerations, Computer based process monitoring and control, Computer and process interfacing, Totally integrated process planning systems, Process planning for rotational and prismatic parts, Machining of curves and surfaces, Five axis machining, Process planning of freedom surfaces, Development of NC codes, Computer aided design of fixtures, Inspection policies and inspection planning, Expert systems and their use in developing process planning systems.	11 Hrs.
3	Retrieval CAPP system: Significance, group technology, structure, relative advantages, implementation, and applications. Selection of manufacturing sequence: Significance, alternative-manufacturing processes, reduction of total set-up cost for a particular sequence, quantitative methods for optimal selection, examples. Generative CAPP system: importance, principle of Generative CAPP system, automation of logical decisions, Knowledge based systems, Inference Engine, implementation, benefits. Determination of machining parameters: Reasons for optimal selection of machining parameters, effect of parameters on production, cost and surface quality, different approaches, advantages of mathematical	12 Hrs.

	approach over conventional approach, solving optimization models of machining processes, design and manufacturing tolerances, methods of tolerance allocation, sequential approach, integration of design and manufacturing tolerances.	
4	Generation of tool path: Simulation of machining processes, NC tool path generation, graphical implementation, determination of optimal index positions for executing fixed sequence, quantitative methods. Implementation techniques for CAPP: MIPLAN system, Computer programming languages the CAPP, criteria for selecting a CAPP system and benefits of CAPP. Computer integrated planning systems, and Capacity planning system.	10 Hrs.

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME-123.1	Understand basic concepts of control systems, microprocessor / micro controller
CO2	MTME-123.2	Able to understand the electromechanical drives
CO3	MTME-123.3	Gain Knowledge of Signal Conditioning and Precision Mechanical Actuation

- 1. Production Systems and Computer Integrated Manufacturing System, byMikell P Groover, Prentice Hall, 2007.
- 2. Computer Processing of Remotely Sensed Images: An Introduction, 3rd Edition, by- Mather Paul, Wiley, 2004.
- 3. Computer Aided Process Control, by- SK Singh, PHI Learning Pvt. Ltd, 2006.
- 4. Computer Aided Design and Manufacturing by M. Sarcar, K. L. Narayan, PHI Learning Pvt. Ltd, 2005.

SUBJECT TITLE: ROBOTICS SUBJECT CODE: MTME124 SEMESTER: 2 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts i.e. classification of robots, present status and future trends, basic components of robotic system. The students will be able to understand 2D, 3D transformation, scaling, rotation, translation, homogeneous coordinates, multiple transformation.

S No.	Content	Contact
		Hrs.
1.	Introduction: History of robots, Classification of robots, Present status and future trends. Basic components of robotic system. Basic terminology- Accuracy, Repeatability, Resolution, Degree of freedom.	13 Hrs.
	Mechanisms and transmission, End effectors, Grippers-different methods of gripping, Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, Cam type gripper, Magnetic grippers, Vacuum grippers, Air operated grippers; Specifications of robot.	
2	Drive systems and Sensors Drive system- hydraulic, pneumatic and electric systems Sensors in robot – Touch sensors, Tactile sensor, Proximity and range sensors, Robotic vision sensor, Force sensor, Light sensors, Pressure sensors.	7 Hrs.
3	Kinematics and Dynamics of Robots 2D, 3D Transformation, Scaling, Rotation, Translation, Homogeneous coordinates, multiple transformation, Simple problems. Matrix representation, Forward and Reverse Kinematics Of Three Degree of Freedom, Homogeneious Transformations, Inverse kinematics of Robot, Robot Arm dynamics, D- H representation of robots, Basics of Trajectory Planning.	12 Hrs.
4	Robot Control, Programming and Applications Robot controls-Point to point control, Continuous path control, Intelligent robot, Control system for robot joint, Control actions, Feedback devices, Encoder, Resolver, LVDT, Motion Interpolations, Adaptive control. Introduction to Robotic Programming, On-line and off-line programming, programming examples. Robot applications-Material handling, Machine loading and unloading, assembly, Inspection, Welding, Spray painting,	10 Hrs.

CO1	MTME-124.1	Understand the basic concepts of classification of robots, present status and future trends
CO2	MTME-124.2	Understand 2D, 3D transformation
CO3	MTME-124.3	Gain Knowledge of Robot Control, Programming and Applications

- 1. Industrial Robotics, Technology programming and Applications by Mikell P Groover, Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, AshishDutta, McGraw Hill, 2012.
- 2. Introduction to Robotics- mechanics and control by Craig. J. J, Addison- Wesley, 1999.
- 3. Robotics Technology and flexible automation by S.R. Deb, Tata McGraw-Hill Education., 2009.
- 4. Robotics Engineering an Integrated Approach by Richard D. Klafter, Thomas .A, ChriElewski, Michael Negin, PHI Learning, 2009.

SUBJECT TITLE: OPTIMIZATION TECHNIQUES SUBJECT CODE: MTME125 SEMESTER: 2 CONTACT HOURS/WEEK: Lecture (L) Tut

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of meaning of operations research, modeling in operation research, principles of modeling. The students will be able to understand 2D, 3D transformation, scaling, rotation, translation, homogeneous coordinates, multiple transformation.

S No.	Content	Contact
		Hrs.
1.	Definition of Optimization: Meaning of Operations Research, Modeling	7 Hrs.
	in operation research, principles of modeling, Introduction to linear and	
	non-linear programming problems and formulation of problems.	
2	Linear Programming: Characteristics, Assumptions and Applications,	13 Hrs.
	Graphical solutions of two variables LP Problem. Linear programming in	
	standard form. Solution of LP by Simplex (including Big M and Two	
	phase methods) and revised Simplex methods. Special cases of LP	
	Duality and dual Simple method. Sensitivity analysis of LP problems	
	Network Models: Transportation problem Transplanment problem	
	Assignment problem Traveling selection problem, Shortest route	
	Assignment problem, fravening-salesman problem, Shortest route	
-	problem, Minimal spanning tree problem, Maximum flow problem.	4.4.77
3	CPM & PERI: Characteristics & uses, drawing of network, removal of	12 Hrs.
	redundancy in network. Computation of EOT, LOT, free slack, total	
	slack in CPM and PERT, crashing, resource allocation	
	Dynamic Programming: Deterministic and Probabilistic Dynamic	
	programming	
	Game theory: Two-person, Zero-sum games, Games with mixed	
	strategies, Graphical solution, Solution by linear programming.	
4	Non-linear Programming: Characteristics, Concepts of convexity,	10 Hrs.
	maxima and minima of functions of n variables using Lagrange	
	multipliers and Kuhn-Tukker conditions. Quadratic programming One	
	dimensional search methods Fibonacci and golden section method	
	Ontimization using gradient methods for unconstrained problems	
	Optimization using gradient methods for unconstrained problems.	

CO1	MTME-125.1	Understand the basic concepts of classification of robots, present status and future trends
CO2	MTME-125.2	Understand 2D, 3D transformation
CO3	MTME-125.3	Gain Knowledge of Robot Control, Programming and Applications

Suggested Readings / Books:

Engineering Optimization Theory and Practice by S.S. Rao, New Age International, 2004.
Optimization for Engineering Design by Kalyanmoy Deb, PHI, 2008.

- 3. Optimization Techniques by J.S Arora, John Wiley, 2001.

SUBJECT TITLE: LAB-II (COMMON TO ALL) SUBJECT CODE: MTME-139 SEMESTER: 2 CONTACT HOURS/WEEK: Lecture (L)

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
-	-	2	2

Internal Assessment: 60 End Term Exam: 40 Duration of Exam: 3 Hrs

One lab /field/industrial oriented project /problem will be allocated to each student related to the subjects related to the subjects taught in 1st semester.

CO1	MTME-139.1	Understand the basic concept of machinability
CO2	MTME-139.2	Able to Understand the selection of topic and its presentation
CO3	MTME-139.3	Understand the use of seminar at different areas and places

(Departmental Elective-I)

SUBJECT TITLE: PRODUCT LIFE CYCLE MANAGEMENT (Elective-I) SUBJECT CODE: MTME160 SEMESTER: 2 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Practical (P)

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of product life cycle management (PLM): definition, PLM lifecycle model. The students will be able to understand the digital manufacturing – PLM, digital manufacturing, benefits manufacturing.

S No.	Content	Contact
		Hrs.
1.	Introduction to Product Life Cycle Management(PLM): Definition, PLM Lifecycle model, Threads of PLM, Need for PLM, Opportunities and benefits of PLM, Views, Components and Phases of PLM, PLM feasibility study, PLM visioning. PLM Concepts, Processes and Workflow: Characteristics of PLM, Environment driving PLM,PLM Elements, Drivers of PLM, Conceptualization, Design, Development, Validation, Production, Support of PLM.	7 Hrs.
2	Product Data Management (PDM) Process and Workflow: PDM systems and importance, reason for implementing a PDM system, financial justification of PDM implementation. Versioning, check-in and checkout, views, Metadata, Lifecycle, and workflow. Applied problems and solution on PDM processes and workflow. Collaborative Product Development: Engineering vaulting, product reuse, smart parts, engineering change management, Bill of materials and process consistency, Digital mock-up and prototype development, design for environment, virtual testing and validation, marketing collateral.	15 Hrs.
3	Tools of Communication for collaborative work: Creation of 3DXML and CAD drawing using CAD software. Creation of an animation for assembly instructions on 3D via composer, creation of an acrobat 3D document. Applied problems and solutions on tools of communication for collaborative work. Knowledge and optimization of design products: Know how, best practices, parameterization of design, Applied problems and Solution on optimization of products using power copy, publication, parameters, formula, rule, check, design table, configuration, reaction.	10 Hrs.

4	Digital Manufacturing - PLM: Digital manufacturing, benefits	10 Hrs.
	manufacturing, manufacturing the first-one, Ramp up, virtual learning	
	curve, manufacturing the rest, production planning.	
	Developing a PLM strategy and conducting a PLM assessment: Strategy,	
	Impact of strategy, implementing a PLM strategy, PLM initiatives to	
	support corporate objectives. Infrastructure assessment, assessment of	
	current systems and applications.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME160.1	Understand basic concepts of product life cycle management (PLM): definition.
CO2	MTME160.2	Understand PLM lifecycle model
CO3	MTME160.3	Understand the digital manufacturing – PLM, digital manufacturing, benefits manufacturing.

- 1. Product Life cycle Management by S. John, Springer, 2011.
- 2. Product Life cycle Management (Volume: 3) The Executive Summary by S. John, Springer, 2011.

(Departmental Elective-I) SUBJECT TITLE: MODELING AND SIMULATION SUBJECT CODE: MTME161 SEMESTER: 2 CONTACT HOURS/WEEK: Lecture (L) Tutorial

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of use and scope of mathematical modeling, principles of model formulation, role and importance of steady-state and dynamic simulation. The students will be able to understand the modeling of specific systems: constant and variable holdup CSTRs under isothermal and non-isothermal conditions.

S No.	Content	Contact
		Hrs.
1.	Introduction: Use and scope of mathematical modeling, Principles of	7 Hrs.
	model formulation, Role and importance of steady-state and dynamic	
	simulation, Classification of models, Model building, Modeling	
	difficulties, Degree-of-freedom analysis, Selection of design variables,	
	Review of numerical techniques, Model simulation.	
2	Fundamental Laws: Equations of continuity, energy, momentum, and	10 Hrs.
	state, Transport properties, Equilibrium and chemical kinetics, Review of	
	thermodynamic correlations for the estimation of physical properties like	
	phase equilibrium, bubble and dew points	
3	Modeling of Specific Systems: Constant and variable holdup CSTRs	15 Hrs.
	under isothermal and non-isothermal conditions, Stability analysis, Gas	
	phase pressurized CSTR, Two phase CSTR, Non-isothermal PFR, Batch	
	and semi-batch reactors, Heat conduction in a bar, Laminar flow of	
	Newtonian liquid in a pipe, Gravity flow tank, Single component	
	vaporizer, Multi-component flash drum, Absorption column, Ideal binary	
	distillation column and no ideal multi-component distillation column,	
	Batch distillation with holdup etc.	
4	Simulation: Simulation of the models, Sequential modular approach,	10 Hrs.
	Equation oriented approach, Partitioning and tearing, Introduction and	
	use of process simulation software (Aspen Plus/ Aspen Hysys) for flow	
	sheet simulation.	

CO1	MTME161.1	Understand basic concepts of use and scope of mathematical modeling,
		principles of model formulation

CO2	MTME161.2	Understand role and importance of steady-state and dynamic simulation.
CO3	MTME161.3	Understand the modeling of specific systems: constant and variable holdup CSTRs under isothermal and non-isothermal conditions.

- 1. Process Modeling, Simulation, and Control for Chemical Engineering by W.L. Luyben, McGraw-Hill, 1998.
- 2. Process Plant Simulation by B.V. Babu, Oxford University Press, 2004.
- 3. Process Modeling, Longman Sc& Tech., M.M. Denn, 1987

(Departmental Elective-I) SUBJECT TITLE: FINITE ELEMENT METHODS SUBJECT CODE: MTME162 SEMESTER: 2 CONTACT HOURS/WEEK: Lecture (L) Tutorial

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of the finite element method, comparison with finite difference method. The students will be able to understand the finite element analysis of 2-D problems: Finite element modeling of single variable problems, triangular and rectangular elements

S No.	Content	Contact
		Hrs.
1.	Introduction: Historical background, basic concept of the finite element	7 Hrs.
	method, comparison with finite difference method.	
2	Variation Methods: Calculus of variation, Rayleigh-Ritz and Galerkin methods: Finite Element Analysis of 1-D problems: Formulation by	15 Hrs.
	different approaches (direct, potential energy and Galerkin); Derivation	
	of elemental equations and their assembly, solution and its post	
	processing, Applications in heat transfer, fluid mechanics and solid	
	mechanics: bending of beams analysis of truss and frame.	
3	Finite Element Analysis of 2-D problems: Finite element modelling of	10 Hrs.
	single variable problems, triangular and rectangular elements;	
	Applications in heat transfer, fluid mechanics and solid mechanics; Axi-	
	symmetric and 3D bodies.	
4	Numerical Considerations: numerical integration, error analysis, meshes	10 Hrs.
	refinement. Plane stress and plane strain problems; Bending of plates;	
	Eigen value and time dependent problems.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME-162.1	Understand the basic concepts of finite element method,
CO2	MTME-162.2	Understand the difference between finite element and finite difference methods.
CO3	MTME-162.3	Understand some programming aspects: mesh generation, mesh refinement, numerical integration etc.

- 1. Finite Element Procedures in Engineering Analysis by K.J. Bathe, Prentice-Hall, Englewood Cliffs, NJ, 1982.
- 2. Introduction to the Finite Element Method by J.N. Reddy, McGraw-Hill', New York, 1993.
- 3. Finite Element Analysis by C.S. Krishnamoorthy, Tata McGraw Hill, 2001
- 4. Finite Element Methods by Chandupatla, Pearson Publication, 2004.

(Departmental Elective-I) SUBJECT TITLE: OPERATION MANAGEMENT (Elective-I) SUBJECT CODE: MTME163 SEMESTER: 2ND CONTACT HOURS/WEEK: Lecture (L) Tutorial (T)

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of operations managements which helps the students to enhance their skills.

S No.	Content	Contact
		Hrs.
1.	Introduction: Basic concepts of operations and production management,	7 Hrs.
	Types of manufacturing systems and their characteristics, scope of operations management.	
2	Product and Process Design: System planning and design, long-range planning, product and process design and technological considerations, MACRO and MICRO process design. Demand Forecasting: Role of demand forecasting in operations decisions; various demand patterns, qualitative and quantitative techniques of demand forecasting, introduction to standard software used in demand forecasting.	12 Hrs.
3	Production Planning and Scheduling: Aggregate production planning, operation scheduling, various scheduling criteria, lot sizing, job shop control; Mutli-stage manufacturing systems, their scheduling and management, capacity planning, introduction to standard software used for Production Planning and Scheduling. Materials Planning: Details of material requirement planning (MRP), manufacturing resource planning (MRP-II) and enterprisewide resource planning (ERP) with their various techniques, JIT and JIT-II concepts.	13 Hrs.
4	Facilities Planning: Plant design, types and considerations in the plant location, plant layout types, design, evaluation, principles and types of material flow, optimum plant layout.	10 Hrs.

CO1	MTME-163.1	Understand the basic concepts of production, productivity and function of
		management
CO2	MTME-163.2	To gain knowledge of hierarchy, principles and dimensions of planning
		function of organizations

CO3	MTME-163.3	Determine the various theories and approaches related to Industrial
		Engineering

Suggested Readings / Books:

- 1. Modern Production/Operations Management by Buffa, E. S. and Sarin, R. K, John Wiley & Sons, 2000.
- 2. Production Operations Management by Adam, E., Jr. and Ebert, R. E., Pearson Education, 2006.
- 3. Operations Management: Policy, Practice, and Performance Improvement by Brown, S., Blackmon, K., Cousins, P. and Maylor H., Butterworth-Heinemann, 2009.

4. Operations Management by Dervitsiotis, K. N., McGraw Hill, 2003.

5. Production and Operations Management by Starr M. K., Thomson Business Information., 2002.

SYLLABUS

SEMESTER-III

SUBJECT TITLE: SMART MATERIALS AND APPLICATIONS SUBJECT CODE: MTME126 SEMESTER: 3 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Pra

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of smart materials and their application for sensing and actuation, mechatronics aspects. The students will be able to understand shape memory alloys (SMA), electro-active polymers (EAPs) and magnetostrictive materials.

S No.	Content	Contact
		Hrs.
1.	Introduction: Smart materials and their application for sensing and	13 Hrs.
	actuation, Mechatronics aspects.	
	Piezoelectric materials: Piezoelectricity and piezoelectric materials,	
	Constitutive equations of piezoelectric materials, Piezoelectric actuator	
	types, Control of piezoelectric actuators, Applications of piezoelectric	
	actuators for precise positioning and scanning.	
2	Shape memory alloys (SMA): Properties of shape memory alloys, Shape	15 Hrs.
	memory effects, Pseudo-elasticity in SMA, Design of shape memory	
	actuator, selection of materials, Smart actuation and control,	
	Applications of SMA in precision equipments for automobiles, trains and	
	medical devices.	
	Electro-active polymers (EAPs): Ionic polymer metal composites	
	(IPMC), Conductive polymers, Carbon nanotubes, Dielectric elastomers,	
	Design & control issues for EAP actuators, Applications of EAP for	
	biomemetic, tactile display and medical devices.	
3	Magnetostrictive materials: Basics of magnetic properties of materials,	15 Hrs.
	magnetostriction: constitutive equations, types of magnetostrictive	
	materials, Design & control of magnetostrictive actuators, Applications	
	of magnetostrictive materials for active vibration control.	

CO1	MTME126.1	Understand basic concepts of smart materials and their application
CO2	MTME126.2	Understand shape memory alloys (SMA), electro-active polymers (EAPs)
CO3	MTME126.3	Gain knowledge of magnetostatic materials

- 1. Emerging Actuator Technologies- a Micromechatronics Approach by Jose L. Pons, John Wiley & Sons Ltd, 2005.
- 2. Smart Material Systems: Model Development by Ralph Smith, SIAM, Society for Industrial and Applied Mathematics, 2005.
- 3. Dielectric Elastomers as Electromechanical Transducersby F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Elsevier, Hungry, 2008.
- 4. Electroactive Polymer (EAP) Actuators as Artificial Muscles Reality, Potential and Challenges by Y. B. Cohen, SPIE press, USA, 2004.

SUBJECT TITLE: MANUFACTURING OF COMOSITE MATERIALSSUBJECT CODE: MTME127SEMESTER: 3CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practical

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of composites, function of the matrix and reinforcement in composites, matrices, thermosets and thermoplastic, fiber reinforcement. The students will be able to understand the metal matrix and reinforcement, manufacturing processes for metal matrix composites: dispersion hardended and particle composite.

S No.	Content	Contact
		Hrs.
1.	Introduction to Composites, Function of the Matrix and Reinforcement	7 Hrs.
	in Composites, Matrices: Thermosets and Thermoplastic, Fiber	
	Reinforcement.	
	Properties of Composites, Composites testing, Composites design:	
	Laminate theory, Rule of mixtures, symmetry and balance	
2	Thermoset Composite manufacturing: Lay-up processes, Spray up	15 Hrs.
	process, Thermoset Composite manufacturing: Fiber placement process,	
	Thermoset Composite manufacturing: Resin transfer moulding.	
	Thermoset Composite manufacturing: Vaccum assisted resin transfer	
	moulding, Thermoset Composite manufacturing: Compression molding	
	process, Thermoset composites manufacturing: Filament winding,	
	Thermoplastic Composite manufacturing: Sheet moulding,	
	Thermoplastic Composite manufacturing: Injection moulding, sheet	
	moulding, Calendaring, Thermoplastic Composite manufacturing:	
	Extrusion, Blow molding, rotational molding, Thermoforming	
3	Metal Matrix Composites: Metal matrix and reinforcement,	10 Hrs.
	Manufacturing processes for Metal Matrix Composites: Dispersion	
	hardended and particle composite, Manufacturing processes for Metal	
	matrix composites: Layer composites and infiltration method.	
4	Ceramic matrix composites: Hot isostatic processing, Non - destructive	10 Hrs.
	testing of Composites, Manufacturing process selection: Cost,	
	performance, size shape, rate of production. Steps for process selection	

CO1	MTME-107.1	Understand basic concepts of composite material based on matrix and
		topology,

CO2	MTME-107.2	Able to understand the industrial application of composite materials
CO3	MTME-107.3	Able to understand distribution of constituents and Nano-composites

- 1. Composites manufacturing: materials, product, and process engineering by S. Mazumdar, CRC press, 2001.
- 2. Composite materials and processing by M. Balasubramanian, CRC press, 2013.
- 3. Manufacturing processes for advanced composites by F.C Campbell, Elsevier, 2003.

SUBJECT TITLE: PRE-THESIS SEMINAR SUBJECT CODE: MTME182 SEMESTER: 3 CONTACT HOURS/WEEK: Lecture (

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
-	-	-	4

Internal Assessment: 100

Students should present the research topic which should be carried out in final thesis

CO1	MTME-182.1	Understand the potential of presenting through seminar	
CO2	MTME-182.2	Able to Understand the selection of topic and its presentation	
CO3	MTME-182.3	To effectively use of seminar for selecting the research area	

SUBJECT TITLE: PROJECT SUBJECT CODE: MTME183 SEMESTER: 3 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
_	-	-	10

Internal Assessment: 60 External Assessment: 40

Students should make a project and thereafter submit the file along with ppt.

CO1	MTME-183.1 Understand the method of concept learning through practical skills	
CO2	MTME-183.2	Able to Understand the potential of practical demonstration
CO3	MTME-183.3	To effectively use the practical skills for project management

(Departmental Elective-II) SUBJECT TITLE: RAPID PROTOTYPING SUBJECT CODE: MTME164 SEMESTER: 3 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Pr

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of rapid prototyping: classification of manufacturing processes. The students will be able to understand the materials selections and product prototyping: geometrical modeling techniques, wireframe modeling, surface modeling and solid modeling.

S No.	Content	Contact
		Hrs.
1.	Introduction to Rapid Prototyping: Classification of Manufacturing	9 Hrs.
	Processes, Introduction to Rapid Prototyping, Rapid Prototyping and its	
	Impact, Engineering design process, Product development, Product	
	Prototyping and Product Development, Need of Product Prototyping,	
	Prototype Planning and Management, Product and Prototype Cost	
	Estimation, Prototype Design Methods and tools.	
2	Materials Selections and Product Prototyping: Geometrical Modelling	12 Hrs.
	Techniques, Wireframe Modelling, Surface Modelling and solid	
	modelling, Prototyping Materials, Modelling of Material Properties,	
	Modelling and Design of Materials and Structures.	
	Rapid Prototyping Processes: Rapid Prototyping Overview, Rapid	
	Prototyping Procedure, Liquid-Based RP Processes, Solid-Based RP	
	Processes, Powder-Based RP Processes. Direct	
3	Digital Prototyping and Manufacturing: Solid Models and Prototype	13 Hrs.
	Representation, Reverse Engineering for Digital Representation,	
	Prototyping and Manufacturing Using CNC Machining, Fully	
	Automated Digital Prototyping and Manufacturing.	
	Direct Methods for Rapid Tool Production: Classification of Direct	
	Rapid Tool Methods, Direct ACESTM Injection Moulds, Laminated	
	Diject Manufactured (LaM) Tools, DTM Rapid Tool, Sand Form, EOS	
	Direct 1001 Process, Direct Metal 1001ing using 3Dp. applications of	
	Kapid Prototyping: Functional Models, Pattern for Investment and	
	Models	
4	Models Indirect Methods for Darid Teel Dreduction, Motel Deposition Teels	0 11
4	The multicular international and the production in the position for the production in the position for the production in the productin the	ð Hrs.
	Casting Twith Matallia Care Sand Casting Kaltaal Process	
	Casting, Fusible Metallic Core, Sand Casting, Keltool Process	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME-164.1	Understand the basic concepts of rapid manufacturing: customization and mass customization
CO2	MTME-164.2	Understand the classification of rapid manufacturing processes
CO3	MTME-164.3	Understand 3D printing, direct metal deposition/3D welding, laser/electron beam melting based technologies

- 1. Rapid prototyping and engineering applications by Frank W. Liou, CRC press publications, 2010.
- 2. Rapid manufacturing by DT Pham & SS Dimov, Springer, 2004.
- 3. Product design by Kevin otto&, kristin wood, Pearson publication, 2007.

(Departmental Elective-II) SUBJECT TITLE: PRODUCT DESIGN AND DEVELOPMENT SUBJECT CODE: MTME165 SEMESTER: 3

CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of product design in industry, principal requirements of good product design, factors and considerations affecting product design. The students will be able to understand the value engineering, concept, advantage and applications, value, types of values, analysis of function.

S No.	Content	Contact
		Hrs.
1.	Importance of product design in industry, Principal requirements of good	20 Hrs.
	product design. Factors and considerations affecting product design.	
	Ergonomic factor in product design, Product design methodology and	
	techniques, Basic elements and concepts of visual design	
2	Materials, forms, function and color relationships. Product graphics,	13 Hrs.
	product development and testing, Packaging materials their	
	characteristics and applications, Packaging design considerations	
3	Value engineering, concept, advantage and applications, Value, types of	10 Hrs.
	values, Analysis of function, using and evaluating functions, Value	
	engineering techniques. Value control	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME-165.1	Understand the basic concepts of principal requirements of good product design.
CO2	MTME-165.2	Understand the factors and considerations affecting product design
CO3	MTME-165.3	Understand value engineering, concept, advantage and applications

Suggested Readings / Books:

1.Product Design & Development by K.T. Ulrich, Steven D Eppinger, Tata McGrawhill New Delhi, 2001.

- 2. The Mechanical Design Process byDavid G Ullman, McGrawhillInc., 1992.
- 3. Product Design Fundamentals and Methods by N.J.M. Roozenberg, J. Ekels, N.F.M Roozenberg, John Willey & Sons, 1995

4. Product Design: "Techniques in Reverse Engineering and new Product Development by Kevin Otto & Kristin Wood, Pearson Education, 2004.

(Departmental Elective-II) SUBJECT TITLE: COMPUTER INTEGRATED MANUFACTURING SYSTEM SUBJECT CODE: MTME166 SEMESTER: 3 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Practical (P) Cree

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of product life cycle management. need of CAD/CAM integration through computers, benefits of integration, types of production systems and their automation. The students will be able to understand the computer aided production planning and control: computer aided shop floor control.

S No.	Content	Contact
		Hrs.
1.	Introduction: Introduction to Product life cycle management. Need of CAD/CAM integration through computers. Benefits of integration	10 Hrs.
	Types of production systems and their automation, CAD/CAM	
	integration. Concept of FMS and CIMS, DNC based factory	
	database.	
2	Elements of a General CIM System: Types of CIM systems, CAD-CAM	12 Hrs.
	link for CIMS, Benefits of CAM, FMS and CIMS, Automated material	
	handling systems, equipment and their functions. Integration of Robots	
	Storage and Retrieval Systems (AS/RS) Carousel storage system design	
	of automatic material handling system. KWO analysis, work-part	
	transfer mechanisms.	
3	Group Technology: Concept and terminology, Part family formation,	9 Hrs.
	Classification and coding systems for components, Group technology	
1	Computer Aided Production Planning and Control: Computer aided shop	11 Une
4.	floor control Computer aided inspection & quality control Shop floor	11 1115.
	data collection systems. Sensors used in Automation. Tool management	
	system, Automatic identification systems, Barcode system. CIM	
	Database and Database Management Systems: Types, Management	
	information system, Manufacturing data preparation.	

CO1	MTME-166.1	Understand the basic concepts OF CAD/CAM contents and tools,
-----	------------	--

CO2	MTME-166.2	Understand the history of CAD/CAM development, CAD/CAM market
		trends.
CO3	MTME-166.3	Understand mathematical representation of solids and geometrical
		transformations.

- 1. CAD/ CAM by M.P. Groover and E.W. Zimmers, Dorling Kingsley, 2008.
- 2. Automation, Production Systems and Computer Integrated Manufacturing by M.P. Groover, Pearson Education Asia, 2009.
- 3. Principles of Computer Integrated Manufacturing by K.S. Vajpayee, Prentice Hall, 2006.
- 4. Computer Integrated Manufacturing by P.N. Rao, N.K. Tewari and T.K. Kundra, McGraw Hill, 1998.

(Departmental Elective-II) SUBJECT TITLE: INDUSTRIAL AUTOMATION

SUBJECT CODE: MTME167 SEMESTER: 3 CONTACT HOURS/WEEK:

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

Course Objectives:

The course has been designed to cover the basic concepts of automation in production system, principles and strategies of automation, basic elements of an automated system. The students will be able to understand the control technologies in automation: industrial control systems, process industries versus discrete-manufacturing industries.

S No.	Content	Contact
		Hrs.
1.	Introduction: Automation in Production System, Principles and Strategies of Automation, Basic Elements of an Automated System,	9 Hrs.
	Advanced Automation Functions, Levels of Automations. Flow lines &	
	Transfer Mechanisms, Fundamentals of Transfer Lines. (SLE: Analysis	
-	of Transfer Lines).	
2	Material handling and Identification Technologies: Overview of Material Handling Systems Principles and Design Consideration Material	13 Hrs.
	Transport Systems, Storage Systems, Overview of Automatic	
	Automated Manufacturing Systems: Components Classification and	
	Overview of Manufacturing Systems, Manufacturing Cells, GT and	
	Cellular Manufacturing, FMS, FMS and its Planning and	
	Implementation. Quality Control Systems: Traditional and Modern	
	Quality Control Methods, SPC Tools, Inspection Principles and	
	Practices, Inspection Technologies.	
3	Control Technologies in Automation: Industrial Control Systems,	12 Hrs.
	Process Industries Versus Discrete-Manufacturing Industries, Continuous Versus Discrete Control Computer Process and its Forms	
	Computer Based Industrial Control: Introduction & Automatic Process	
	Control, Building Blocks of Automation Systems: LAN, Analog &	
	Digital I/O Modules, SCADA Systems& RTU. Distributed Control	
	System: Functional Requirements, Configurations & some popular	
	Distributed Control Systems.	
4.	Modeling and Simulation for Plant Automation: Introduction, need for	8 Hrs.
	system Modeling, Building Mathematical Model of a Plant, Modern	
	Tools & Future Perspective. Industrial Control Applications: Cement,	
	Thermal, Water Treatment & Steel Plants.	

COURSE OUTCOMES: On completion of this course, the students will be able to

CO1	MTME-167.1	Understand the basic concepts basic concepts of computer based control i.e. Implementing control system using computer or microprocessor.
CO2	MTME-167.2	Understand advanced functions of PLC
CO3	MTME-167.3	Understand analog input and output functions, analog input and output modules, analog signal processing in PLC

- 1. Automation, Production Systems and Computer Integrated Manufacturing byM.P.Groover, Pearson Education.5th edition, 2009.
- 2. Computer Based Industrial Control by Krishna Kant, EEE-PHI,2nd edition,2010
- 3. An Introduction to Automated Process Planning Systems by Tiess Chiu Chang & Richard A. Wysk
- 4. Performance Modeling of Automated Manufacturing Systems by Viswanandham, PHI, 1st edition,2009.

SYLLABUS

SEMESTER-IV

SUBJECT TITLE: DISSERTATION SUBJECT CODE: MTME-190

Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
4	-	-	4

Students should do the research thesis and submit a report file to the department. The ppt. is compulsory for the same.

CO1	MTME-190.1	Understand the potential of doing the research
CO2	MTME-190.2	Able to Understand the selection of topic and its presentation
CO3	MTME-190.3	To effectively use the different tools, report writing and present in schematically way the research area selected