#### **SCHEME & SYLLABUS**

#### (Choice Based Credit System)

for

#### **B. TECH.**

in

#### **ELECTRICAL ENGINEERING**

(w.e.f. Session 2022-23)

#### Program Code: EE-301



## DEPARTMENT OF ELECTRICAL ENGINEERING SCHOOL OF ENGINEERING

#### RIMT UNIVERSITY, MANDI GOBINDGARH, PUNJAB

# **TABLE OF CONTENTS**

| S. No. | Content                                                                                                       |
|--------|---------------------------------------------------------------------------------------------------------------|
| 1.     | Section 1: Vision and Mission of the University                                                               |
| 2.     | Section 2: Vision and Mission of the Department                                                               |
| 3.     | Section 3: About the Program                                                                                  |
| 4.     | Section 4: Program Educational Objectives (PEOs), Program Outcomes (POs) and Program Specific Outcomes (PSOs) |
| 5.     | Section 5: Curriculum / Scheme with Examination Scheme                                                        |
| 6.     | Section 6: Detailed Syllabus with Course Outcomes                                                             |

# **Vision & Mission of the University**

### VISION

To become one of the most preferred learning places a centre of excellence to promote and nurture future leaders who would facilitate in desired change in the society.

## MISSION

- To impart teaching and learning through cutting edge technologies supported by the world class infrastructure
- To empower and transform young minds into capable leaders and responsible citizens of India instilled with high ethical and moral values

# **Vision and Mission of the Department**

### VISION

The Department of Electrical Engineering will provide programs of the high quality to produce world class competent engineers who can address challenges and are successfully involved in innovative research. It commits itself to impart the skills, knowledge and attitudes to create, interpret, apply and disseminate engineering to build better future for humankind.

#### MISSION

- To create the environment that facilitates learning fundamentals of Electrical Engineering
- To impart the knowledge in Electrical Circuits, Power Systems electrical machines, power electronics non conventional energy
- Providing better understanding of the domain of study, including wider social issues, corporate social responsibility and ethical decision making.
- To ensure continuous interaction of the students through MOU's and collaborative research projects.

## **About the Program**

B. Tech. (Electrical Engineering) or Bachelor of Technology in Electrical Engineering is an Under-Graduate Electrical Engineering course. Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electromagnetism.

Our B. Tech. Program is an Outcome Based Education model which is a 4 year, 8 Semester Full time Program of 133\* credit hours with a Choice Based Credit System (CBCS) and Grading Evaluation System. B.TECH EE course is structured semester wise and includes theory and Practical to impart the students a holistic understanding of B. Tech. EE subjects. After successfully completing the course, B. Tech. Electrical Engineering job scope includes Electrical engineer, Application Engineer and many more.

### **SECTION 4**

# **Program Educational Objectives, Program Outcomes and Program Specific Outcomes**

#### **PROGRAMME EDUCATION OBJECTIVES**

| PEO1 | To establish the careers of the students in the field of Electrical Engineering and related areas, providing innovative and effective solutions.                                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEO2 | To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve engineering problems and also to pursue higher studies.         |
| PEO3 | To train students with good scientific and engineering breadth so as to understand, analyze, design, and create novel products and solutions for the real-life problems                |
| PEO4 | To provide students with an academic environment aware of excellence, leadership, ethical code and guidelines, and the life-long learning needed for a successful professional career. |

#### **PROGRAMME OUTCOMES**

| PO 1 | <b>Engineering Knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | <b>Problem Analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences                                                          |
| PO 3 | <b>Design/Development of Solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |
| PO 4 | <b>Conduct Investigations of Complex Problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                        |
| PO 5 | <b>Modern Tool Usage:</b> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.                                                        |
| PO 6 | <b>The Engineer and Society:</b> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                       |

| PO 7  | <b>Environment and Sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 8  | Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice                                                                                                                                                                                    |
| PO 9  | Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                          |
| PO 10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project Management and Finance:</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-Long Learning:</b> Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |

#### PROGRAMME SPECIFIC OUTCOMES

| PSO 1 | Apply principles of Engineering, Electronics and Computer Science; physics,           |
|-------|---------------------------------------------------------------------------------------|
|       | chemistry, environmental science, mathematics (including differential equations,      |
|       | discrete mathematics, linear algebra and complex variables) and laboratory skills     |
|       | for building, testing, operation and maintenance of high currents electrical systems, |
|       | such as, electrical machines, power and energy systems.                               |
| PSO 2 | Model, analyse, design, and realize physical systems, components or processes         |
|       | related to high current electrical engineering systems.                               |

## SECTION 5

# **Curriculum / Scheme with Examination** Scheme

|                                                                    | (ELEC | CTRICAL ENGIN | EERING) |    |
|--------------------------------------------------------------------|-------|---------------|---------|----|
| (ELECTRICAL ENGINEES.No.SemesterNo. of Contact<br>Hours1.I282.II28 |       | Marks         | Credits |    |
| 1.                                                                 | Ι     | 28            | 900     | 22 |
| 2.                                                                 | II    | 28            | 900     | 22 |

Semester Wise Summary of the program: B.TECH.

| S.No. | Semester | No. of Contact | Marks | Credits |
|-------|----------|----------------|-------|---------|
|       |          | Hours          |       |         |
| 1.    | Ι        | 28             | 900   | 22      |
| 2.    | II       | 28             | 900   | 22      |
| 3.    | III      | 25             | 900   | 24      |
| 4.    | IV       | 27             | 900   | 24      |
| 5.    | V        | 24             | 800   | 24      |
| 6.    | VI       | 27             | 900   | 27      |
| 7.    | VII      | 29             | 700   | 21      |
| 8.    | VIII     | 00             | 500   | 10      |
|       | Total    | 188            | 6500  | 174     |

## **EXAMINATION GRADING SCHEME**

| Marks Percentage<br>Range | Grade                 | Grade Point | Qualitative Meaning |
|---------------------------|-----------------------|-------------|---------------------|
| 80-100                    | 0                     | 10          | Outstanding         |
| 70-79                     | $\mathrm{A}^+$        | 9           | Excellent           |
| 60-69                     | А                     | 8           | Very Good           |
| 55-59                     | <b>B</b> <sup>+</sup> | 7           | Good                |
| 50-54                     | В                     | 6           | Above Average       |
| 45-49                     | С                     | 5           | Average             |
| 40-44                     | Р                     | 4           | Fail                |
| 0-39                      | F                     | 0           | Fail                |
| ABSENT                    | AB                    | 0           | Fail                |

Percentage Calculation: CGPA \*10

#### **FIRST SEMESTER**

| Course         |                                                    | Cont<br>Hours/ |   | k  |        | Cantaa           | Evalua<br>(% of | Exam<br>Duratio |       |              |
|----------------|----------------------------------------------------|----------------|---|----|--------|------------------|-----------------|-----------------|-------|--------------|
| Course<br>Code | Course Title                                       | L              | Т | Р  | Credit | Contac<br>t Hrs. | Interna<br>l    | External        | Total | n<br>(Hours) |
| BPHY 1122      | Applied Physics                                    | 3              | 1 | 0  | 4      | 4                | 40              | 60              | 100   | 3<br>Hrs     |
| BMAT-1111      | Engineering<br>Mathematics-I                       | 3              | 1 | 0  | 4      | 4                | 40              | 60              | 100   | 3<br>Hrs     |
|                | Communicative<br>English                           | 3              | 0 | 0  | 3      | 3                | 40              | 60              | 100   | 3<br>Hrs     |
|                | Basics of Electrical<br>& Electronics Engg.        | 3              | 0 | 0  | 3      | 3                | 40              | 60              | 100   | 3<br>Hrs     |
|                | Environmental<br>Science                           | 2              | 0 | 0  | 2      | 2                | 40              | 60              | 100   | 3<br>Hrs     |
|                | Applied Physics<br>Lab                             | 0              | 0 | 2  | 1      | 2                | 50              | 50              | 100   | 3<br>Hrs     |
| BENG-1172      | Communicative<br>English<br>Lab                    | 0              | 0 | 2  | 1      | 2                | 50              | 50              | 100   | 3Hrs         |
| BELE-1171      | Basics of Electrical<br>& Electronics Engg.<br>Lab | 0              | 0 | 2  | 1      | 2                | 50              | 50              | 100   | 3Hrs         |
|                | Manufacturing<br>Practice                          | 0              | 0 | 6  | 3      | 6                | 50              | 50              | 100   | 3<br>Hrs     |
|                | TOTAL                                              | 14             | 2 | 12 | 22     | 28               |                 |                 | 900   |              |

#### **SECOND SEMESTER**

| Subject   |                                        |    | Contact<br>Hours/Week |    |    | Conta<br>ct<br>Hrs. | Evalu<br>Schen<br>Total | •            | Exam<br>Duration<br>(Hours) |        |
|-----------|----------------------------------------|----|-----------------------|----|----|---------------------|-------------------------|--------------|-----------------------------|--------|
| Code      | T<br>it<br>le                          | L  | Т                     | Р  |    | 1113.               | Interna<br>l            | Extern<br>al | Total                       |        |
| BELE-1001 | Energy Management                      | 2  | 0                     | 0  | 2  | 2                   | 40                      | 60           | 100                         | 3 Hrs  |
| BCHM-1206 | Applied Chemistry                      | 3  | 1                     | 0  | 4  | 4                   | 40                      | 60           | 100                         | 3 Hrs  |
| BMAT-1211 | Engineering<br>Mathematics-II          | 3  | 1                     | 0  | 4  | 4                   | 40                      | 60           | 100                         | 3 Hrs  |
| BCSE-1201 | Programming for Problem<br>Solving     | 3  | 0                     | 0  | 3  | 3                   | 40                      | 60           | 100                         | 3 Hrs  |
| BMEC-1201 | Elements of Mechanical<br>Engg.        | 3  | 0                     | 0  | 3  | 3                   | 40                      | 60           | 100                         | 3 Hrs  |
| BMEC-1202 | Engineering Drawing<br>with CAD*       | 0  | 0                     | 6  | 3  | 6                   | 50                      | 50           | 100                         | 3 Hrs  |
| BCHM-1273 | Applied Chemistry Lab                  | 0  | 0                     | 2  | 1  | 2                   | 50                      | 50           | 100                         | 3 Hrs  |
| BCSE-1271 | Programming for Problem<br>Solving Lab | 0  | 0                     | 2  | 1  | 2                   | 50                      | 50           | 100                         | 3 Hrs  |
| BENG-1001 | Soft Skills-I Lab                      | 0  | 0                     | 2  | 1  | 2                   | 50                      | 50           | 100                         | 3 Hrs  |
|           | Total                                  | 14 | 2                     | 12 | 22 | 28                  |                         |              | 900                         | 27 Hrs |

#### **THIRD SEMESTER**

| COURSE |               |                                                                       |    | Contact<br>Hours/Week |   |   | Credit | Relative Weight |     |     |     |     |       |
|--------|---------------|-----------------------------------------------------------------------|----|-----------------------|---|---|--------|-----------------|-----|-----|-----|-----|-------|
| S.No   | Code          | <b>Course Title</b>                                                   | L  | Т                     | Р |   |        | CWA             | LWA | MTE | ЕТЕ | ЕТР | Total |
| 1      | BMAT<br>-2311 | Mathematics-III                                                       | 3  | 1                     | - | 3 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 2      | BELE-<br>2302 | Electrical &<br>Electronics<br>Measurement &<br>Instrumentation       | 3  | 1                     | 0 | 3 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 3      | BELE-<br>2303 | Network Analysis<br>and Synthesis                                     | 3  | 1                     |   | 3 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 4      | BELE-<br>2304 | Electronic Devices<br>& Circuits                                      | 3  | 1                     | - | 3 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 5      | BELE-<br>2305 | Python<br>Programming                                                 | 3  |                       | - | 3 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 6      | BELE-<br>2371 | Python<br>Programming Lab                                             | 0  | 0                     | 2 | - | 1      | -               | 50  | -   | -   | 50  | 100   |
| 7      | BELE<br>-2372 | Programming in<br>MATLAB                                              | 0  | 0                     | 2 | - | 1      | -               | 50  | -   | -   | 50  | 100   |
| 8      | BELE<br>-2373 | Electrical&<br>Electronics<br>Measurement &<br>Instrumentation<br>Lab | 0  | 0                     | 2 | - | 1      | -               | 50  | -   | -   | 50  | 100   |
| 9      | BELE-<br>2374 | Training #                                                            | 0  | 0                     | 0 | - | 2      | -               | 100 | -   | -   | -   | 100   |
|        |               | Total                                                                 | 15 | 4                     | 6 |   | 24     |                 | -   | -   | -   | -   | 900   |

#Institutional training will be imparted in the institution at the end of 2<sup>nd</sup> semester for four- week duration (Minimum 36 hrs. per week) industrialTour will also from the part of this training

#### FOURTH SEMESTER

| COURSE |                |                              |    | Contact<br>Hours/Week |   | Exam<br>Duration<br>(Hours) | Credit | Relative Weight |     |     |     |     |       |  |
|--------|----------------|------------------------------|----|-----------------------|---|-----------------------------|--------|-----------------|-----|-----|-----|-----|-------|--|
| S.No.  | Code           | Course Title                 | L  | Т                     | Р |                             |        | CWA             | LWA | MTE | ETE | ETP | Total |  |
| 1      | BELE-<br>2401  | Electrical<br>Machines I     | 3  | 1                     | 0 | 3                           | 4      | 10              | -   | 30  | 60  | -   | 100   |  |
| 2      | BELE-<br>2402  | Digital<br>Electronics       | 3  | 1                     | 0 | 3                           | 4      | 10              | -   | 30  | 60  | -   | 100   |  |
| 3      | BELE-<br>2403  | Power System-I               | 3  | 1                     | 0 | 3                           | 4      | 10              | -   | 30  | 60  | -   | 100   |  |
| 4      | BELE-<br>2404  | Linear Control<br>System     | 3  | -                     | - | 3                           | 4      | 10              | -   | 30  | 60  | -   | 100   |  |
| 5      | BELE-<br>2405  | Power Plant<br>Engineering   | 3  | 1                     | 0 | 3                           | 4      | 10              | -   | 30  | 60  | -   | 100   |  |
| 6      | BELE -<br>2471 | Electrical<br>Machines I Lab | 0  | 0                     | 2 | -                           | 1      | -               | 50  | -   | -   | 50  | 100   |  |
| 7      | BELE -<br>2472 | Digital<br>Electronics Lab   | 0  | 0                     | 2 | -                           | 1      | -               | 50  | -   | -   | 50  | 100   |  |
| 8      | BELE -<br>2473 | Control System<br>Lab        | 0  | 0                     | 2 | -                           | 1      | -               | 50  | -   | -   | 50  | 100   |  |
| 9      | BTPD-<br>3421  | Soft Skills-I                | -  | -                     | 2 | -                           | 1      |                 | 50  | -   | -   | 50  | 100   |  |
|        |                | Total                        | 15 | 4                     | 8 | -                           | 24     |                 | -   |     | -   | -   | 900   |  |

#### FIFTH SEMESTER

|       | COURSE        |                                                  |    | Contact<br>Hours/Week |   | Exam<br>Duratio<br>n |   | Credit | Relative Weight |     |     |     |     |       |
|-------|---------------|--------------------------------------------------|----|-----------------------|---|----------------------|---|--------|-----------------|-----|-----|-----|-----|-------|
| S.No. | Code          | Course Title                                     | L  | Т                     | Р | (Hours)              |   |        | CWA             | LWA | MTE | ЕТЕ | ЕТР | Total |
| 1     | BELE<br>-3501 | Electrical<br>Machines -II                       | 3  | 1                     | - | 3                    | 4 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 2     | BELE<br>-3502 | Power<br>Electronics &<br>Drives                 | 3  | 1                     | - | 3                    | 4 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 3     | BELE<br>-3503 | Generation and<br>Economics of<br>Electric Power | 3  | 1                     | - | 3                    | 4 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 4     | BELE<br>-3504 | Electromagnetic<br>Field Theory                  | 3  | 1                     | - | 3                    | 4 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 5     | BELE<br>-3505 | Microprocessors<br>and Interfacing               | 3  | 1                     | - | 3                    | 4 | 4      | 10              | -   | 30  | 60  | -   | 100   |
| 6     | BELE<br>-3571 | Electrical<br>Machines -II<br>Lab                | 0  | 0                     | 2 | -                    | 1 | 1      | -               | 50  | -   | -   | 50  | 100   |
| 7     | BELE<br>-3572 | Power<br>Electronics Lab                         | 0  | 0                     | 2 | -                    | 1 | 1      | -               | 50  | -   | -   | 50  | 100   |
| 8     | BELE<br>-3574 | Training #                                       | 0  | 0                     | 0 | -                    | 2 | 2      | -               | 50  | -   | -   | 50  | 100   |
|       |               | Total                                            | 15 | 5                     | 4 |                      |   | 24     | -               | -   | -   | -   | -   | 800   |

#### SIXTH SEMESTER

|       | C             | OURSE                                             |       | Conta<br>urs/V | nct<br>Veek | Exam<br>Duration<br>(Hours) | Credit   | Credit Relative Weight |     |     |     |     |       |
|-------|---------------|---------------------------------------------------|-------|----------------|-------------|-----------------------------|----------|------------------------|-----|-----|-----|-----|-------|
| S.No. | Code          | <b>Course Title</b>                               | L     | Т              | Р           | (Hours)                     |          | CWA                    | LWA | MTE | ETE | ЕТР | Total |
| 1     | BELE-<br>3601 | Power System-II<br>(Switchgear and<br>Protection) | 4     | 0              | 0           | 3                           | 4        | 10                     | -   | 30  | 60  | -   | 100   |
| 2     | BELE-<br>3602 | Electrical Power<br>Utilization                   | 4     | 0              | 0           | 3                           | 4        | 10                     | -   | 30  | 60  | -   | 100   |
| 3     | BELE-<br>3603 | Microcontroller<br>and PLC                        | 3     | 1              | 0           | 3                           | 4        | 10                     | -   | 30  | 60  | -   | 100   |
| 4     | BELE-<br>3604 | Electrical<br>Machines -III                       | 3     | 0              | 0           | 3                           | 4        | 10                     | -   | 30  | 60  | -   | 100   |
| 5     | BELE-<br>3671 | Electrical Power<br>System- Lab                   | 0     | 0              | 2           | -                           | 1        | -                      | 50  | -   | -   | 50  | 100   |
| 6     | BELE-<br>3672 | Microcontroller<br>and PLC Lab                    | 0     | 0              | 2           | -                           | 1        | -                      | 50  | -   | -   | 50  | 100   |
| 7     | BELE-<br>3674 | Minor Project                                     | -     | -              | 3           | -                           | 1        |                        | 50  | -   | -   | 50  | 100   |
| 8     |               | Depa                                              | rtmen | t Ele          | ctive –     | I (Select an                | y one BE | LE-36X                 | XX) |     |     |     |       |
|       | BELE-<br>3611 | Signals and<br>Systems                            | 3     | 0              | 0           | 3                           | 3        | 10                     |     | 30  | 60  | -   | 100   |
|       | BELE-<br>3612 | Flexible AC<br>Transmission<br>System Devices     |       |                |             |                             |          |                        |     |     |     |     |       |
|       | BELE-<br>3613 | Instrumentation in<br>Power System                |       |                |             |                             |          |                        |     |     |     |     |       |
| 9     | BTPD-<br>3622 | Soft Skill-II                                     | -     | -              | 2           | -                           | 1        | -                      | 50  | -   | -   | 50  | 100   |
|       |               | Total                                             | 17    | 1              | 9           |                             | 27       |                        |     |     |     |     | 900   |

#### SEVENTH SEMESTER

|       | COURSE         |                                                       | Contact<br>Hours/Week |     | Exam<br>Duration<br>(Hours) | Credit        |           |        | Relativ | e Weigh | t   |     |       |
|-------|----------------|-------------------------------------------------------|-----------------------|-----|-----------------------------|---------------|-----------|--------|---------|---------|-----|-----|-------|
| S.NO. | Code           | Course Title                                          | L                     | Т   | Р                           |               |           | CWA    | LWA     | MTE     | ЕТЕ | ETP | Total |
| 1     | BELE-<br>4701  | Power<br>System<br>Analysis and<br>Design             | 3                     | 1   | 0                           | 3             | 4         | 10     | -       | 30      | 60  | -   | 100   |
| 2     | BELE-<br>4702  | Non-linear<br>and Digital<br>Control<br>System        | 3                     | 1   | 0                           | 3             | 4         | 10     | -       | 30      | 60  | -   | 100   |
| 3     | BELE-<br>4703  | Non-<br>conventional<br>Energy<br>Sources             | 3                     | 0   | 0                           | 3             | 3         | 10     | -       | 30      | 60  | -   | 100   |
| 4     | BELE-<br>4771  | Power System<br>Analysis and<br>Design Lab            | 0                     | 0   | 2                           | -             | 1         | -      | 50      | -       | -   | 50  | 100   |
| 5     | BELE-<br>4772  | Major Project                                         | 0                     | 0   | 6                           | -             | 3         | -      | 50      | -       | -   | 50  | 100   |
| 6     |                | D                                                     | epar                  | tme | nt Ele                      | ctive – II (S | elect any | one BE | LE-47   | XX)     |     |     |       |
|       | BELE -<br>4711 | Power<br>System<br>Operation<br>and Control           | 3                     | 0   | 0                           | 3             | 3         | 10     | -       | 30      | 60  |     | 100   |
|       | BELE -<br>4712 | Power<br>Quality<br>Monitoring<br>and<br>Conditioning |                       |     |                             |               |           |        |         |         |     |     |       |
|       | BELE -<br>4713 | High Voltage<br>Engineering                           |                       |     |                             |               |           |        |         |         |     |     |       |
| 7     | Oper           | Open Elective                                         |                       | 0   | 0                           | -             | 3         | 16     | 10      | -       | 30  | 60  | 100   |
|       | Total          |                                                       | 15                    | 6   | 8                           |               | 21        |        |         |         |     |     | 700   |

#### **EIGHTH SEMESTER**

| COURSE |               |                     | Contact<br>Hours/Week |   |   | Exam<br>Duration<br>(Hours) | Credit |     | <b>Relative Weight</b> |     |     |     |       |
|--------|---------------|---------------------|-----------------------|---|---|-----------------------------|--------|-----|------------------------|-----|-----|-----|-------|
| S.NO.  | Code          | Course Title        | L                     | Т | Р |                             |        | CWA | LWA                    | MTE | ЕТЕ | ЕТР | Total |
| 1      | BELE-<br>4801 | Industrial Training | 0                     | 0 | 0 | -                           | 10     | 0   | 250                    | 0   | 0   | 250 | 500   |
|        | Total         |                     | 0                     | 0 | 0 |                             | 10     |     |                        |     |     |     | 500   |

CWA: Class Work Assessment

- LWA: Lab Work Assessment
- MTE: Mid Term Examination
- **ETE:** End Term Examination
- **EPE:** End Practical Examination

#### SUBJECT TITLE: MATHEMATICS-III SUBJECT CODE: BMAT-2311 SEMESTER: III CONTACT HOURS/WEEK: Lectu

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 2            | 0             | 4          |

Internal Assessment: 40

End Term Exam: 60

**Duration of Exam; 3 Hrs** 

#### **Objective and outcome of course:**

The course is designed in such a way to make student aware of mathematical subjects and their uses. After completion of the course they will get expertise in solving practical problems using mathematical aids.

#### **Contents of Syllabus:**

| Sr. No   | Contents                                                                                                                    | Contact<br>Hours |
|----------|-----------------------------------------------------------------------------------------------------------------------------|------------------|
| UNIT-I   | Fourier Series                                                                                                              | 10               |
|          | Periodic functions, Euler's formula. Even and odd functions, half range expansions, Fourier series of different wave forms. |                  |
|          |                                                                                                                             | 15               |
| UNIT-II  | Laplace Transforms                                                                                                          | 15               |
|          | Laplace transforms of various standard functions, properties of Laplace                                                     |                  |
|          | transforms, inverse Laplace transforms, transform of derivatives and                                                        |                  |
|          | integrals, Laplace transform of unit step function, impulse function,                                                       |                  |
|          | periodic functions, applications to solution of ordinary linear differential                                                |                  |
|          | equations with constant coefficients, and simultaneous differential                                                         |                  |
|          | equations.                                                                                                                  |                  |
| UNIT-III | Partial Differential Equations & Applications of PDEs                                                                       | 15               |
|          | Formation of partial differential equations, Linear partial differential                                                    |                  |
|          | equations, homogeneous partial differential equations with constant                                                         |                  |
|          | coefficients. Wave equation and Heat conduction equation in one                                                             |                  |
|          | dimension. Two dimensional Laplace equation in Cartesian Coordinates,                                                       |                  |
|          | solution by the method of separation of variables.                                                                          |                  |
| UNIT-IV  | Functions of Complex Variable                                                                                               | 20               |
|          | Limits, continuity and derivative of the function of complex variable,                                                      |                  |
|          | Analytic function, Cauchy-Riemann equations, conjugate functions,                                                           |                  |
|          | harmonic functions; Conformal Mapping: Definition, standard                                                                 |                  |
|          | transformations, translation, rotation, inversion, bilinear. Complex                                                        |                  |
|          | Integration: Line integrals in the complex plane, Cauchy's theorem,                                                         |                  |
|          | Cauchy's integral formula and derivatives of analytic function. Taylor's                                                    |                  |
|          | and Laurent's expansions (without proofs), singular points, poles, residue,                                                 |                  |
|          | Integration of function of complex variables using the method of                                                            |                  |
|          | residues.                                                                                                                   |                  |

#### **Course Outcomes:**

| CO1 |             | Students will be able to comprehensive understanding of Fourier series,<br>Laplace transforms and various mathematical functions in engineering<br>analysis |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BMAT-2311.2 | To make students able to select various Engineering models for optimization and implementation with aforesaid applications                                  |
| CO3 | BMAT-2311.3 | To implement the various Mathematic equation for evaluating the results                                                                                     |
| CO4 | BMAT-2311.4 | To understand the function of Partial differential equation and complex variables                                                                           |

#### **Recommended Books:**

- 1. Kreyszing, E., Advanced Engineering Mathematics, Eighth edition, John Wiley, New Delhi.
- 2. Grewal, B. S., Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- **3.** Ian N. Sneedon, Elements of Partial Differential Equations, McGraw- Hill, Singapore, 1957.
- 4. Peter. V. O'Nil, Advanced Engineering Mathematics, Wadsworth Publishing Company.
- 5. Taneja, H. C., Engineering Mathematics, Volume-I & Volume-II, I. K. Publisher.
- 6. Babu Ram, Advance Engineering Mathematics, Pearson Education.
- 7. Bindra, J. S., Applied Mathematics, Volume-III, Kataria Publications.
- **8.** Advanced Engineering Mathematics, O'Neil, Cengage Learning

# SUBJECT TITLE: ELECTRICAL & ELECTRONICS MEASUREMENT &INSTRUMENTATIONSUBJECT CODE: BELE-2302SEMESTER: 3<sup>rd</sup>CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practical (P)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

#### Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives**

1. To aware the students about the basics of measurements and instrumentation systems.

- 2. To impart knowledge about different instruments for electrical measurements.
- 3. To provide them basic concepts of different types of sensors and transducers.

| S.No.    | Contents                                                                 | Contact<br>Hours |  |  |  |  |  |
|----------|--------------------------------------------------------------------------|------------------|--|--|--|--|--|
| UNIT-I   | Measuring Instruments: Introduction to measuring techniques,             | 17Hrs            |  |  |  |  |  |
|          | necessity of measurements, block diagram of measurement system,          |                  |  |  |  |  |  |
|          | types of instruments, classification of standards, fundamental and       |                  |  |  |  |  |  |
|          | derived units. Instrument characteristics; accuracy, precision,          |                  |  |  |  |  |  |
|          | repeatability and sensitivity. Different types of errors in measurement. |                  |  |  |  |  |  |
|          | Principle of operation and constructional features; D'Arsonval           |                  |  |  |  |  |  |
|          | galvanometer, Moving Coil PMMC and Moving Iron instrument                |                  |  |  |  |  |  |
|          | (Repulsion and Attraction type), Electrodynamics instruments             |                  |  |  |  |  |  |
|          | Digital Voltmeter and Multimeter                                         |                  |  |  |  |  |  |
| UNIT-II  | Measurement of Resistance: Low, Medium and High resistance               | 11 Hrs           |  |  |  |  |  |
|          | measurement using Kelvin Double Bridge, Ammeter-Voltmeter method,        |                  |  |  |  |  |  |
|          | Wheat Stone Bridge, Loss of Charge and Megger.                           |                  |  |  |  |  |  |
|          | Measurement of Inductance and Capacitance: Maxwell Inductance,           |                  |  |  |  |  |  |
|          | Hay's, Anderson and Schering Bridges, Measurement of frequency by        |                  |  |  |  |  |  |
|          | Wein bridge method.                                                      |                  |  |  |  |  |  |
| UNIT-III | Oscilloscope: Basic principle and construction of Analog CRO, sweep      | 12 Hrs           |  |  |  |  |  |
|          | modes, applications in measurement of voltage, frequency (Lissajous      |                  |  |  |  |  |  |
|          | pattern), Introduction to Dual Trace Oscilloscope, Digital Storage       |                  |  |  |  |  |  |
|          | Oscilloscope, sampling oscilloscope. Comparison between analog and       |                  |  |  |  |  |  |

|         | digital oscilloscope.                                                      |       |
|---------|----------------------------------------------------------------------------|-------|
| UNIT-IV | Transducers: Transducer and its classifications, basic requirements of     | 10Hrs |
|         | Transducer/Sensors. Displacement Transducers: LVDT, RVDT and Piezo         |       |
|         | Electric. Resistance Thermometer, Thermistors, Thermocouples and Strain    |       |
|         | Gauge Transducer: Basic principle of operation of Resistance strain gauge. |       |

#### **Course Outcomes**

On successful completion of this course, the student will able to .

| CO1 | BELE-2302.1 | Design, analyse various instruments.                                   |
|-----|-------------|------------------------------------------------------------------------|
| CO2 | BELE-2302.2 | Classify various errors present in measuring instruments.              |
| CO3 | BELE-2302.3 | Understand construction, working principle and types of oscilloscopes. |
| CO4 | BELE-2302.4 | Application of various transducers used in measurement system.         |

#### **Recommended Books:**

- 1. H. Cooper, 'Modern Electronic Instrumentation and Measurement Techniques', PHI,.
- 2. A.K. Sawhney, Electronic Instrumentation and Measurement', DhanpatRai& Sons.
- 3. Jones and Chin, 'Electronic Instruments and Measurement.
- 4. J. Toppin, 'Theory of Errors', Wessely Publishing,.

# SUBJECT TITLE: NETWORK ANALYSIS AND SYNTHESISSUBJECT CODE: BELE-2303SEMESTER: 3CONTACT HOURS/WEEK:Lecture (L)3

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

**Internal Assessment: 40** 

#### End Term Exam: 60

#### Duration of Exam; 3 Hrs Instructions for Question Paper

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives**

- 1. To prepare students to perform the analysis of any electromechanical system.
- **2.** To empower students to understand the working of electrical equipment used in everyday lifeparts

| S.No.    | Contents                                                                              | Contact<br>Hours |  |  |
|----------|---------------------------------------------------------------------------------------|------------------|--|--|
| UNIT-I   | Circuits Concepts: Independent and dependent sources, Standard test signals:          |                  |  |  |
|          | Step, ramp, impulse, and doublet. Mesh and nodal analysis. Network Theorems:          |                  |  |  |
|          | Superposition, Thevenin's, Norton's, Maximum Power Transfer, Millman's,               |                  |  |  |
|          | Tellegen's and Reciprocity, Network Topology                                          |                  |  |  |
|          | Introduction, Network Graph, Tree and Co-tree, Twigs and Links, Incidence             |                  |  |  |
|          | Matrices and its properties, Link currents: Tie-Set Matrix, Cut-Set and Tree          |                  |  |  |
|          | Branch Voltages, Solution of Problems                                                 |                  |  |  |
| UNIT-II  | Introduction, graph of a network, trees, co-trees and loops, incidence matrix,        | 6 Hrs            |  |  |
|          | Cut-set matrix, Tie-set matrix and loop currents, Analysis of networks using          |                  |  |  |
|          | graph theory, duality, and general network transformations.                           |                  |  |  |
|          | Time and Frequency Domain Analysis: Representation of basic circuits in               |                  |  |  |
|          | terms of generalized frequency and their response, Laplace transform, transient       |                  |  |  |
|          | and steady response, transfer function, poles and zeros, pole zero diagram, time      |                  |  |  |
|          | domain behaviors from poles and zeros, Convolution Theorem.                           |                  |  |  |
|          |                                                                                       |                  |  |  |
| UNIT-III | <b>7-III</b> Network Synthesis: Network functions, Impedance and admittance function, |                  |  |  |
|          | Transfer functions. Network function for two port network, Sinusoidal network         |                  |  |  |
|          | in terms of poles and zeros, Real liability condition for impedance synthesis of      |                  |  |  |

|         | RL, LC and RC circuits, network synthesis techniques for 2-terminal network, foster and cauer forms                                                                  |        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| UNIT-IV | <b>Filters Synthesis:</b> Classification of filters, characteristics impedance and propagation constant of pure reactive network, Ladder network, T-section, $\pi$ - | 10 Hrs |
|         | section, terminating half section, pass bands and stop bands, Design of Constant-<br>K, m-derived filters, Composite filters.                                        |        |

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

| CO1 | BTEE-2303.1 | Apply network topology concepts in the formulation and simulation of electrical network problem. |
|-----|-------------|--------------------------------------------------------------------------------------------------|
| CO2 | BTEE-2303.2 | Apply two-port network analysis in the design and analysis of filter and attenuator network.     |
| CO3 | BTEE-2303.3 | Knowledge of mathematical forms such as Laplace transforms and designing of filters circuits.    |
| CO4 | BTEE-2303.4 | Synthesis passive one-port networks using standard Foster and cauer forms.                       |

#### **Recommended Books:**

- 1. Bird John, 'Electrical Circuit Theory and Technology', Newnes,.
- 2. AbhijitChakraborty, 'Circuit Theory', DhanpatRai,.
- 3. D. Roy Chaudhury, 'Networks and Synthesis', New Age International.
- 4. T.S.K. VIyer, 'Circuit Theory', Tata McGraw Hill,
- 5. Mohan, Sudhakar Sham, 'Circuits and Networks Analysis and Synthesis', TMH.
- 6. Van Valkenberg, 'Network Analysis and Synthesis', PHI Course.

#### SUBJECT TITLE: ELECTRONICS DEVICES AND CIRCUITS SUBJECT CODE:BELE-2304 SEMESTER: 3 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) P

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

#### Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives**

- 1. To aware the students about basic electronic components.
- 2. To update the knowledge about amplification circuits to amplify the signal.
- 3. Various types of circuits to generate signals.
- 4. How electronic components are specified and selected for industrial applications.

| S.No.   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| UNIT-I  | Introduction:       Introduction to semiconductors theory, P type and N-Type         semiconductors,       different types of diodes,       Drift current,       diffusion current.         Rectifiers.Review of p-n junction diode and special purpose diodes - Zener diode,       Tunnel diode,       Varactor diode,       Photo diode;       Clippers-single and two level,         clampers,       their analysis with ideal and practical diodes |       |  |  |
| UNIT-II | <b>Bipolar Junction Transistor:</b> Working action of NPN and PNP. CE, CB and CC configurations, Current components, Concept of D.C. and A.C. load line and operating point, Q point selection, bias stability, various biasing circuits- fixed bias, collector to base bias, emitter bias, voltage divider, Stability factors.                                                                                                                        | 14Hrs |  |  |

| UNIT-III | Power Amplifiers: Classifications according to mode of operation and driving         |        |  |  |
|----------|--------------------------------------------------------------------------------------|--------|--|--|
|          | output, Class A direct coupled with resistive load, operation of class- B power      |        |  |  |
|          | amplifier, Push-Pull Amplifiers, Concept of feedback in amplifiers: Positive and     |        |  |  |
|          | negative feedback, effect of negative feedback.                                      |        |  |  |
|          | Oscillators: Principle of operation of different oscillator circuits-RC Phase shift, |        |  |  |
|          | Wien Bridge, Hartley Bridge, Colpits and Crystal oscillators                         |        |  |  |
|          | Operational amplifiers and its characteristics and applications.                     |        |  |  |
| UNIT-IV  | Field Effect Transistors: FET construction and working, P-channel and N-             | 10 Hrs |  |  |
|          | channel JFETs. Comparison with BJT, Characteristics of JFET, JFET parameters-        |        |  |  |
|          | AC drain resistance, trans-conductance, amplification factor, dc drain resistance.   |        |  |  |
|          | Construction, working and characteristics of MOSFET. Comparison of BJT, JFET         |        |  |  |
|          | and MOSFET.                                                                          |        |  |  |
|          |                                                                                      |        |  |  |

#### **Course Outcomes :**

On successful completion of this course, the student will be able

|     |              | Skills about the basic electronic circuits, their operational characteristics and their applications. |
|-----|--------------|-------------------------------------------------------------------------------------------------------|
| CO2 | BELE -2304.2 | Examine PN junction in semiconductors devices under various conditions.                               |
| CO3 | BELE -2304.3 | Describe the behavior of special purpose diodes                                                       |
| C04 |              | Use the techniques, skills, and modern engineering tools necessary for engineering practice.          |

#### **Recommended Books:**

- 1. Boylstad and Nashelsky, 'Electronic Devices and Circuits', Prentice Hall.
- 2. Millman and Halkias, 'Integrated Electronics', McGraw Hill.
- 3. Malvino, 'Electronic Principles', McGraw Hill.
- 4. V.K. Mehta, 'Principles of Electronics', S. Chand.
- 5. Donald L. Shilling and Charles Below, 'Electronic Circuits', TMH.

#### SUBJECT TITLE: PYTHON PROGRAMMING SUBJECT CODE: BELE-2305 SEMESTER: CONTACT HOURS/WEEK: Lecture (L)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 0            | 0             | 3          |

#### Internal Assessment: 40 End Term Exam: 60 Duration of Exam:3 Hrs

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives:**

- 1. To understand why Python is a useful scripting language for developers.
- 2. To learn how to design and program Python applications.
- 3. To learn how to use lists, Tuples, and dictionaries in Python programs.
- 4. To learn how to identify Python object types.
- 5. To learn how to use indexing and slicing to access data in Python programs.

| S.No | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hours |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.   | Introduction to Python: Overview, History, importance, characteristics, features and applications. Local Environment Setup, Getting Python, Installation, Environment Variables, IDE. pyCharm, Anaconda, Jupyter etc. Basics of Python: Syntax: Interactive vs Script Programming, Identifiers, Reserved Words, Lines and Indentation, Single line Multiline Statements, Command Line. Variable Types: assignment, Data Types (Numbers, String,                                                                                                                   | 13               |
|      | List, Tuple, Dictionary). Operators, Decision Making, Loops and Date & Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| 2.   | Functions & Packages: Define & Call Functions, Pass by reference vs value,<br>Function Arguments (Required, Keyword, Default, Variable length),<br>Anonymous Functions, return statement, Global vs Local vs Dir vs Reload.<br>Import Statement, PYTHONPATH and Packages. Files I/O and Exception<br>Handlings: Input, Opening and Closing, file Object Attributes, Reading and<br>Writing, File Positions, Directories. Standard Exceptions, Exception<br>Handling, Assertion, except Clauses, Argument and Raising with<br>Exceptions, User Defined Exceptions. | 12               |

| 3. | Object Oriented with Python: Classes, Objects, Class-variable, Function<br>Overloading, Operator Overloading, Instantiation, Inheritance, Garbage<br>Collection, Overriding, Base Overloading and Data Hiding. Regular<br>Expressions, Matching vs Searching, Modifiers, Patterns, Special<br>Characters and Syntax | 13 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4. | Programming with Python Modules: Python Tools & Utilities, Matplotlib,<br>Module Creation, Modules locating, NumPy, Pandas, SciPy, Django and<br>etc. python examples with A.I.                                                                                                                                     | 12 |

#### **Course Outcome:**

| CO1 | BECE-2305.1 | Understand Python syntax and semantics and be fluent in the use  |  |  |
|-----|-------------|------------------------------------------------------------------|--|--|
|     | DECE-2505.1 |                                                                  |  |  |
|     |             | of Python flow control and Functions                             |  |  |
|     |             |                                                                  |  |  |
| CO2 | BECE-2305.2 | Develop, run and manipulate Python programs using Core data      |  |  |
|     |             | structures like Lists, Dictionaries, and use of Strings Handling |  |  |
|     |             |                                                                  |  |  |
|     |             | methods                                                          |  |  |
|     |             |                                                                  |  |  |
| CO3 | BECE-2305.3 | Develop, run and manipulate Python programs using File           |  |  |
|     |             | Operations and searching pattern using regular expressions.      |  |  |
|     |             |                                                                  |  |  |
| CO4 | BECE-2305.4 | Interpret the concepts of object oriented programming using      |  |  |
|     |             | Python                                                           |  |  |
|     |             | 1 yulon                                                          |  |  |
| COS | DECE 2205 5 | Determine the need for rythan modules libraries to design        |  |  |
| CO5 | BECE-2305.5 | Determine the need for python modules, libraries to design       |  |  |
|     |             | games, GUI and create efficient web applications using           |  |  |
|     |             | Matplotlib, NumPy, Pandas, Django                                |  |  |
|     |             |                                                                  |  |  |

#### **Suggested Readings / Books:**

- **1.** SheetalTaneja Naveen Kumar," Python Programming: A Modular Approach, by Pearson, 2017.
- **2.** Downey, Allen B. Think Python: How to Think Like a Computer Scientist (Version 1.6.6 Ed.), 2012.
- **3.** Hamilton, Naomi. "The A-Z of Programming Languages: Python", 2008.
- 4. Lutz, Mark Learning Python (5th ed.). O'Reilly Media, 2013.
- 5. Pilgrim, Mark Dive into Python 3. Apress, 2009
- **6.** JISU ELSA JACOB, BHARATH VISAM S, "Python Programming", Katson Books 2022

7. Sushil Bhardwaj, "Introduction to Python Programming", Kalyani Publishers, 2022.

#### Subject Title: Programming with Python Lab Subject Code : BELE-2371 Semester : 3 Contact Hours / Week:

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| -          | -           | 2                   | -         |

Internal Assessment: 50 End Term Exam: 50

**Objective:**To learn the concepts of data structure and algorithms and its implementation. The course has the main ingredients required for a computer science graduate and has all the necessary topics for assessment of data structures and algorithms

| S.No | List of Experiments                                     |  |
|------|---------------------------------------------------------|--|
| 1    | Compute the GCD of two numbers                          |  |
| 2    | Find the square root of a number (Newton's method)      |  |
| 3    | Exponentiation (power of a number)                      |  |
| 4    | Find the maximum of a list of numbers                   |  |
| 5    | Linear search and Binary search                         |  |
| 6    | Selection sort, Insertion sort                          |  |
| 7    | Merge sort                                              |  |
| 8    | First n prime numbers                                   |  |
| 9    | Multiply matrices                                       |  |
| 10   | Programs that take command line arguments (word count)  |  |
| 11   | Find the most frequent words in a text read from a file |  |
| 12   | Simulate elliptical orbits in Pygame                    |  |
| 13   | Simulate bouncing ball using Pygame                     |  |
| 14   | Program to generate different waves                     |  |
| 15   | Program to generate different graphs                    |  |
| 16   | Tower of Hanoi                                          |  |
| 17   | Program To Find Given Number is Armstrong Number or not |  |
| 18   | Bubble Sort Algorithm                                   |  |
| 19   | Program to interface with an Image (open CV)            |  |
| 20   | Program to develop web page (Django)                    |  |

#### **Course Outcome:**

| CO1 | BELE-2371.1 | Develop, run and manipulate Python programs using Core<br>data structures like Lists, Dictionaries, and use of Strings<br>Handling methods                |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-2371.2 | Develop, run and manipulate Python programs using File<br>Operations and searching pattern using regular expressions.                                     |
| CO3 | BELE-2371.3 | Interpret the concepts of object oriented programming using<br>Python                                                                                     |
| CO4 | BELE-2371.4 | Determine the need for python modules, libraries to design<br>games, GUI and create efficient web applications using<br>Matplotlib, NumPy, Pandas, Django |

# SUBJECT TITLE: PROGRAMMING IN MATLABSUBJECT CODE: BELE-2372SEMESTER: 3<sup>rd</sup>CONTACT HOURS/WEEK:Lecture (L)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

#### **Internal Assessment: 50**

#### **External Assessment: 50**

| S.N. | Contents                                                                                                                                                                                    | Contact<br>Hours |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1    | Introduction to Fundamentals of MATLAB Programming.                                                                                                                                         | 2 Hrs            |
| 2    | To perform Arithmetic and logic operations in MATLAB.                                                                                                                                       | 2 Hrs            |
| 3    | To perform branch and loop operations in MATLAB.                                                                                                                                            | 2 Hrs            |
| 4    | To use basic built-in function of Matrices in MATLAB.                                                                                                                                       | 2 Hrs            |
| 5    | To develop a user defined function file in MATLAB                                                                                                                                           | 2 Hrs            |
| 6    | To plot 2-D & 3-D graphs in MATLAB, such as plots, subplots, logarithmic plots and multiple plots etc.                                                                                      | 2 Hrs            |
| 7    | To plot 3-phase AC supply voltage in MATLAB.                                                                                                                                                | 2 Hrs            |
| 8    | To develop MATLAB program to calculate ABCD parameters of transmission line.                                                                                                                | 2 Hrs            |
| 9    | To develop Simulink model to show series resonance phenomenon and to plot voltage & current waveforms and frequency vs impedance graph.                                                     | 2 Hrs            |
| 10   | To develop Simulink model to show parallel resonance phenomenon and plot voltage & current waveforms and frequency vs admittance graph.                                                     | 2 Hrs            |
| 11   | To develop a Simulink model of symmetrical three phase power system<br>supplying a three phase balanced load and to display the three phase voltage,<br>current, active and reactive power. | 2 Hrs            |
| 12   | To develop a Simulink model of symmetrical three phase power system<br>supplying a three phase balanced load and to display the three phase voltage,<br>current, active and reactive power. | 2 Hrs            |
| 13   | To develop Simulink model of three phase transformer and to display the primary and secondary voltages and currents.                                                                        | 2 Hrs            |

#### **Course Outcomes:**

On successful completion of this course, the learner will be able to

| CO1 | BELE-2372.1 | Know about BASIC built in functions of MATLAB.                                                          |
|-----|-------------|---------------------------------------------------------------------------------------------------------|
| CO2 | BELE-2372.2 | Break a complex task into simple and smaller.                                                           |
| CO3 | BELE-2372.3 | They will learn to do various programming operations in MATLAB and develop simulink models in SIMULINK. |

| CO4 | BELE-2372.4 | They will be able to draw 2-D and 3-D plots in MATLAB. |
|-----|-------------|--------------------------------------------------------|
|     |             |                                                        |

#### SUBJECT TITLE: ELECTRICAL& ELECTRONICS MEASUREMENT &INSTRUMENTATIONLABORATORY SUBJECT CODE: BELE-2373 SEMESTER: 3 CONTACT HOURS/WEEK:

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

## Internal Assessment: 50

#### **External Assessment: 50**

#### **Course Objectives**

1. To understand the working principal and construction of the measuring instruments and recorders.

- 2. To measure various electrical parameters using meters and transducers.
- 3. To calibrate the measuring devices such as meters and transducers.

| S.No. | Contents                                                                                                                                                                  | Contact<br>Hours |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| 1     | Study of principle of operation of various types of electromechanical measuring instruments.                                                                              |                  |  |  |
| 2     | To measure high value of DC current and voltage using shunt and multiplier.                                                                                               | 2 Hrs            |  |  |
| 3     | To measure low resistance using wheat stone bridge.                                                                                                                       | 2 Hrs            |  |  |
| 4     | To measure active and reactive power in 3-phase balanced load by one wattmeter method.                                                                                    | 2 Hrs            |  |  |
| 5     | To measure the active power in 3-phase balanced and unbalanced load by two<br>wattmeter method and observe the effect of power factor variation on<br>wattmeter readings. | 2 Hrs            |  |  |
| 6     | To study and calibrate single phase energy meter.                                                                                                                         | 2 Hrs            |  |  |
| 7     | Measurement of resistance using Kelvin's Bridge.                                                                                                                          | 2 Hrs            |  |  |
| 8     | Measurement of self-inductance using Anderson's Bridge.                                                                                                                   | 2 Hrs            |  |  |
| 9     | Measurement of capacitance using Schering Bridge.                                                                                                                         | 2 Hrs            |  |  |
| 10    | Plotting of Hysteresis loop for a magnetic material using flux meter.                                                                                                     | 2 Hrs            |  |  |
| 11    | Measurement of frequency using Wein's Bridge.                                                                                                                             | 2 Hrs            |  |  |
| 12    | To study the connections and use of Current and Potential transformers and to find out ratio error.                                                                       | 2 Hr             |  |  |
| 13    | Determination of frequency and phase angle using CRO.                                                                                                                     | 2 Hrs            |  |  |
| 14    | Measurement of unknown voltage using potentiometer.                                                                                                                       | 2 Hrs            |  |  |
| 15    | To find 'Q' of an inductance coil and verify its value using Q-meter.                                                                                                     | 2 Hrs            |  |  |

Note: At least ten experiments should be performed in semester.

#### **Course Outcomes:**

| CO1 | BELE-2373.1 | Measurement of various electrical and non electrical parameters.                                                             |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-2373.2 | Compute the errors present in measuring instruments and calibrate them.                                                      |
| CO3 | BELE-2373.3 | Ability to use the techniques and skills to operate CRO.                                                                     |
| CO4 | BELE-2373.4 | Select various transducers for the measurement of physical quantities like temperature, pressure ,distance and displacement. |

#### SUBJECT TITLE: ELECTRICAL MACHINES – I SUBJECT CODE: BELE-2401 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture (L) T

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks.

#### **Course Objectives**

- 1. To prepare students to perform the analysis of any electromechanical system.
- **2.** To empower students to understand the working of electrical equipment used in everyday life

| Sr. No   | Contents                                                                                |  |
|----------|-----------------------------------------------------------------------------------------|--|
| UNIT-I   | Transformers: Working principle, construction of single phase transformer, EMF          |  |
|          | equation, phasor diagrams on no-load and on loaded conditions, open circuit and         |  |
|          | short circuit tests, equivalent circuit parameters estimation, voltage regulation and   |  |
|          | efficiency, back to back test. Effect of saturation on exciting current and in-rush     |  |
|          | current phenomenon. Parallel operation of single phase transformers.                    |  |
| UNIT-II  | Auto Transformers: Principle of operation, equivalent circuit and phasor                |  |
|          | diagrams, comparison with two winding transformer.                                      |  |
| UNIT-III | Three-Phase Transformers: Different types of winding connections, Voltage and           |  |
|          | current ratios, Parallel operation of three phase transformers. Three winding           |  |
|          | transformer's equivalent circuit, off-load and on-load tap changing transformer,        |  |
|          | Scott connections. Testing of transformers.                                             |  |
| UNIT-IV  | <b>DC</b> Generator:Working principle, construction of DC Machines, Armature            |  |
|          | windings, single and double layer winding diagrams, EMF and torque equations,           |  |
|          | armature reaction,effect                                                                |  |
|          | ofbrushshift, compensating winding, commutation, causes of bad commutation, methods     |  |
|          | ofimproving commutation, methods of excitation of DC generators and their               |  |
|          | characteristics                                                                         |  |
| UNIT-V   | <b>DC Motor:</b> Working principle characteristics, starting of shunt and series motor, |  |
|          | starters, speed control methods: field and armature control. Braking: plugging,         |  |
|          | dynamic and regenerative braking, Testing: Swinburne's test, Hopkinson test, Field      |  |
|          | test. Estimation of losses and efficiency.                                              |  |

#### **Contents of Syllabus:**

#### COURSE OUTCOMES

On successful completion of this course, the learner will be able to

| CO1 | BELE-2401.1 | Outline the principle of operation, construction and testing of single phase transformer |
|-----|-------------|------------------------------------------------------------------------------------------|
| CO2 | BELE-2401.2 | Demonstrate the working principle of different types of dc machines                      |
| CO3 | BELE-2401.3 | Analyze the losses in dc machines to improve the efficiency by conducting various tests. |
| C04 | BELE-2401.4 | The skill to analyze the response of any electrical machine.                             |

# SUBJECT TITLE: DIGITAL ELECTRONICS SUBJECT CODE: BELE-2402 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture (L)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

## **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives**

- 1. To provide knowledge about basics of digital electronics.
- 2. To impart knowledge about designing of digital circuits.
- 3. Students will use schematics and symbolic algebra to represent digital gates in he creation of solutions to design problems

#### **Contents of Syllabus:**

| Sr. No         | Contents                                                                             |  |  |
|----------------|--------------------------------------------------------------------------------------|--|--|
| UNIT-I         | Number System and Binary Code: Introduction, Binary, decimal, Octal,                 |  |  |
|                | hexadecimal, BCD number system, Signed and unsigned numbers, binary                  |  |  |
|                | operations: Addition, Subtraction. Multiplication and division. Subtractions using   |  |  |
|                | 1's and 2's compliment. ASCII code. Excess 3 codes and Gray code. Logic gates:       |  |  |
|                | OR, AND, NOT, NOR, NAND, Ex-OR gates, Basic theorems of Boolean algebra,             |  |  |
|                | sum of products and product of sums. Minimisation using theorems, minimisation       |  |  |
|                | using K-map up to 4 variables.                                                       |  |  |
| UNIT-II        | Combinational logic circuits: Combinational circuit design, multiplexer,             |  |  |
|                | demultiplexer, encoders, decoders, adders, subtractors, code converters, parity      |  |  |
|                | checkers, BCD display drive, magnitude comparators.                                  |  |  |
| UNIT-III       | Sequential circuits: Flip Flop fundamentals, different flip flop configurations:     |  |  |
|                | SR, JK, D,T. Edge triggered and clocked flip flops, Registers: Types of Registers,   |  |  |
|                | series and parallel shift: circuit diagram, timing wave form and operations.         |  |  |
|                | Counters: synchronous and asynchronous, Johnson counter.                             |  |  |
| <b>UNIT-IV</b> | <b>D/A and A/D Converters:</b> Introduction, Weighted register D/A converter, binary |  |  |
|                | ladder D/A converter, D/A accuracy and resolution, parallel A/D converter,           |  |  |
|                | Counter type A/D converter, Successive approximation A/D converter, Single and       |  |  |
|                | dual slope A/D converter, A/D accuracy and resolution.                               |  |  |

Course Outcomes: On successful completion of this course, the learner will be able to

| CO1 | BELE-2402.1 | Became familiar with the digital signal, positive and negative logic,<br>Boolean algebra, logic gates, logical variables, the truth table, number<br>systems, codes, and their conversion from to others. |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-2402.2 | Learn the minimization techniques to simply the hardware requirements of digital circuits, implement it, design and apply for real time digital systems.                                                  |
| CO3 | BELE-2402.3 | Understand all types of combinational & sequential digital circuits and their designing.                                                                                                                  |
| CO4 | BELE-2402.4 | Know various types of components-ADC and DAC, memory elements and<br>the timing circuits to generate different waveforms, and also the different<br>logic families involved in the digital system.        |

- 1. R.P. Jain, 'Modern Digital Electronics', Tata McGraw Hill.
- 2. Malvino& Leach, 'Digital Principals & Applications', Tata McGraw Hill.
- 3. Fletcher, 'An Engg. Approach to Digital Design', PHI, Indian Edn..
- 4. Sanjay Sharma, 'Digital Electronics' Kataria Sons.

# SUBJECT TITLE: POWER SYSTEM-I (TRANSMISSION AND DISTRIBUTION) SUBJECT CODE: BELE-2403 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) P

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

## **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives:**

- 1. To introduce the students to the structure of power and distribution systems.
- 2. To introduce them to overhead transmission lines and underground cables and make them to understand their operating characteristics.
- 3. To make them familiar with the components and the mechanical design aspects of overhead transmission lines.

| Sr. No   | Contents                                                                           |  |
|----------|------------------------------------------------------------------------------------|--|
| UNIT-I   | Structure of Power System: Growth of power systems: Indian overview,               |  |
|          | Interconnections and their advantages, Electricity act 2003, Environmental and     |  |
|          | safety measures.                                                                   |  |
|          | <b>Distribution Systems:</b> DC 2-wire and 3-wire systems, AC single phase, three  |  |
|          | phase and 4-wire systems, and comparison of copper efficiency. Distribution        |  |
|          | Systems: primary and secondary distribution systems, concentrated and uniformly    |  |
|          | distributed loads on distributors; one and both ends, ring distribution, sub mains |  |
|          | and tampered mains                                                                 |  |
| UNIT-II  | Overhead Transmission Lines: Materials and types of conductors, line               |  |
|          | parameters calculation of inductance and capacitance of single and double circuit  |  |
|          | transmission lines, three phase lines with stranded and bundle conductors,         |  |
|          | generalized ABCD constants and equivalent circuits of short, medium and long       |  |
|          | lines. Line performance: regulation and efficiency of short, medium and long       |  |
|          | lines, series and shunt compensation.                                              |  |
| UNIT-III | Overhead Line Insulators and Mechanical Design of Transmission Lines:              |  |
|          | Type, string efficiency, voltage distribution in string of suspended insulators,   |  |
|          | grading ring, preventive maintenance. Different types of towers, sag-tension       |  |
|          | calculations, Corona-losses, radio and audio noise, transmission line-             |  |
|          | communication line interference, Comparison of EHVAC and HVDC                      |  |

|         | transmission systems.                                                                                                                                                                                                                                                                                                                             |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-IV | <b>Underground Cables:</b> classification of cables based upon voltage and dielectric material, insulation resistance and capacitance of single core cable, dielectric stress, capacitance of 3 core cables, methods of laying, heating effect, Maximum current carrying capacity, cause of failure, comparison with overhead transmission lines. |

| CO1 | BELE-2403.1 | Understand power distribution systems.                                                                                                                                                            |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-2403.2 | Analyse performance of transmission lines and underground cables.                                                                                                                                 |
| CO3 | BELE-2403.3 | Design and Select overhead line insulators and transmission lines                                                                                                                                 |
| CO4 | BELE-2403.4 | Implement the appropriate safety equipments for design of electrical power system with enhancing the efficiency of the transmission and distribution system with environment friendly technology. |

- 1. D.P. Kothari and I. J. Nagrath, 'Power System Engineering', Tata McGraw Hill.
- 2. J.B. Gupta, 'Transmission and Distribution of Electrical Power', Katson Books.
- 3. C.L. Wadhwa, 'Electric Power Systems', New Age International Publishers.
- 4. J. Grainger John and Jr. W.D. Stevenson, 'Power System Analysis', McGraw Hill.

# SUBJECT TITLE: LINEAR CONTROL SYSTEM SUBJECT CODE: BELE-2404 SEMESTER: 4 CONTACT HOURS/WEEK:

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3 Hrs

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives**

- **1.** To obtain transfer functions for electrical circuits, translational/rotational mechanical systems and electromechanical systems.
- **2.** To learn basic goals of control systems in terms of transient/steady state time response behavior.
- **3.** To update the knowledge about control components.

| Sr. No   | Contents                                                                            |  |
|----------|-------------------------------------------------------------------------------------|--|
| UNIT-I   | Introductory Concepts: Plant, Systems, Servomechanism, regulating systems,          |  |
|          | Open loop control system, closed loop control systems, linear and non-linear        |  |
|          | systems, time variant and invariant, Block diagrams, some illustrative examples     |  |
| UNIT-II  | Modelling: Force voltage analogy, force current analogy, Transfer function,         |  |
|          | Block diagram reduction technique, signal flow graphs and Mason's gain              |  |
|          | formula, characteristics equation.                                                  |  |
|          | Time Domain Analysis: Transient response of the first and second order              |  |
|          | systems, Time domain specifications, Steady state error and coefficients,           |  |
|          | Absolute and relative stability, Routh-Hurwitz Criterion.                           |  |
| UNIT-III | Stability Analysis: Root locus technique, sketch of the root locus plot,            |  |
|          | Frequency domain analysis: Closed loop frequency response, bode plots, relative     |  |
|          | stability using bode plot. Frequency response specifications, relation between      |  |
|          | time and frequency response for second order systems, Nyquist criterion for         |  |
|          | stability.                                                                          |  |
| UNIT-IV  | State Space Analysis: State space representations, transfer function from state     |  |
|          | model, state transition matrix, controllability, observability. Control components: |  |
|          | Error detectors- potentiometers and synchros, servo motors, A.C. and D.C.           |  |
|          | techno generators, Magnetic amplifiers.                                             |  |

| CO1 | BELE-2404.1  | Identify a set of algebraic equations to represent and model a complicated system into a more simplified form.                 |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE -2404.2 | Classify any Laplace domain system to illustrate different specification of the system using transfer function concept.        |
| CO3 | BELE -2404.3 | Various mechanical and physical systems in terms of electrical system to construct equivalent electrical models for analysis . |
| CO4 | BELE -2404.4 | Analyzed the designed systems stability                                                                                        |

- 1. Dorf Richard C. and Bishop Robert H., 'Modern Control System', <u>Addison-Wesley,Pearson New Delhi</u>.
- 2. K. Ogata, 'Modern Control Engineering', Prentice Hall.
- 3. B.C. Kuo, 'Automatic Control System', Prentice Hall.
- 4. I.J. Nagrath and M. Gopal, 'Control System Engineering', Wiley Eastern Ltd..
- 5. B.S. Manke, 'Linear Control Systems'

# SUBJECT TITLE: POWER PLANT ENGINEERING SUBJECT CODE: BELE-2405 SEMESTER: 4 CONTACT HOURS/WEEK:

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 0            | 0             | 3          |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam: 3Hrs

## **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives:**

- **1.** To introduce the students to the classification of steam and hydro-electric power plants and make them familiar with the main equipment and machinery used in them.
- 2. To provide them basic concepts of nuclear, gas and diesel power plants.
- 3. To impart knowledge about pollution control and combined operation of different plants.

| Sr. No   | Contents                                                                           |  |  |
|----------|------------------------------------------------------------------------------------|--|--|
| UNIT-I   | Steam Generators, Condensers and Turbines: Classification of steam                 |  |  |
|          | generators, Typesof condensers, effect of air in condensers, steam nozzles, types  |  |  |
|          | of steam turbine efficiencies. Steam Power Plant: Classification, Operation,       |  |  |
|          | Description of Rankin cycle, coal handlingsystem, combustion system, Ash           |  |  |
|          | handling, Feed pumps, Heat exchangers, Economizers, Super heaters, Reheaters,      |  |  |
|          | Air preheaters, Feed water heaters, Evaporators.                                   |  |  |
| UNIT-II  | Hydro-Electric Power Plants: Hydrological cycle, Hydrograph, Flow duration         |  |  |
|          | curve, Classification of hydro plants, Selection of water turbines for hydro power |  |  |
|          | plant.                                                                             |  |  |
|          | Nuclear Power Plants: Nuclear physics, Binding energy, Radioactive decay.          |  |  |
|          | Fertile material, Mass defect, Nuclear reactions type and application, Generation  |  |  |
|          | of nuclear energy by fission, Nuclear reactors. Safety measures, Future of nuclear |  |  |
|          | power.                                                                             |  |  |
| UNIT-III | Gas Turbine: Elements of gas turbines Open and closed cycles for gas turbines,     |  |  |
|          | Performance terms, Plant layout, applications.                                     |  |  |
|          | Diesel Power Plants: Classifications of IC Engines and their performance, four     |  |  |
|          | stroke and two stroke diesel engines, combustion phenomenon; Essential             |  |  |
|          | components, Cetane number, knocking, super charging, operation and layout of       |  |  |
|          | diesel power plant.                                                                |  |  |
| UNIT-IV  | Combined Operation of Different Power Plants: Advantages of combined               |  |  |
|          | operation of plants, load division between power stations, coordination of         |  |  |

|  | different ty | pes of Pov       | wer Plants.   |          |            |       |           |         |             |
|--|--------------|------------------|---------------|----------|------------|-------|-----------|---------|-------------|
|  | Pollution    | <b>Control</b> : | Pollution     | from     | thermal    | and   | nuclear   | plants, | Particulate |
|  | emission a   | nd control       | , electrostat | tic prec | cipitator, | solid | waste dis | posal.  |             |

#### **Course Outcomes:**

On successful completion of this course, the learner will be able to

| CO1 | BELE-2405.1  | Acquire knowledge about various equipment used in thermal, hydro and nuclearpower generation.                                                                |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE -2405.2 | Become familiar with equipment used in gas and diesel power plants.                                                                                          |
| CO3 | BELE -2405.3 | Analyze the working and layout of steam power plants and the different<br>systems comprising the plant and discuss about its economic and safety<br>impacts. |
| CO4 | BELE -2405.4 | Know about the importance of co-ordinate operation of different power plants and methods of pollution control.                                               |

- Chakrabarti, Soni, Gupta and Bhatanagar, 'A Textbook on Power System Engineering', DhanpatRai& Co.
- 2. M.M. EI-Wakil, 'Power Plant Technology', Tata McGraw Hill Edn..
- 3. R.K. Rajput, 'Power Plant Engineering', Luxmi Publications.
- 4. P.C. Sharma, 'Power Plant Engineering', Kataria and Sons.
- **5.** B.G.A. Skrotzki and W.A. Vapot, 'Power Station Engineering and Economy', Tata McGraw Hill Education Pvt.Ltd..
- 6. P.K. Nag, 'Power Plant Engineering', McGraw Hill Education (India) Pvt. Ltd..
- 7. P.K. Nag, 'Power Plant Engineering', McGraw Hill Education (India) Pvt. Ltd..

# SUBJECT TITLE: ELECTRICAL MACHINE-I LABORATORYSUBJECT CODE: BELE-2471SEMESTER: 4CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Pr

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

# Internal Assessment: 50 External Assessment: 50

# **Course Objectives**

- 1. To understand the basics of D.C Machines.
- 2. To introduce variety of speed control of dc shunt motor.
- 3. To Study the universal motor.

# LIST OF EXPERIMENTS

| Sr. No                                                                        | Contents                                                                               |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| EXP-1                                                                         | To study various components/cut-section of DC machine                                  |
| EXP-2                                                                         | To perform starting techniques of various DC machines.                                 |
| <b>EXP-3</b> To obtain torque and speed characteristics of a D.C. Shunt motor |                                                                                        |
| EXP-4                                                                         | To obtain external characteristics of a D.C. shunt generator                           |
| EXP-5                                                                         | To obtain external characteristics of a D.C. series generator.                         |
| EXP-6                                                                         | To obtain external characteristics of DC compound generator.                           |
| EXP-7                                                                         | Speed control of a dc shunt motor by varying armature circuit and field circuit method |
| EXP-8                                                                         | To obtain performance characteristics of universal motor.                              |
| EXP-9                                                                         | To perform Swinburne's Test                                                            |
| EXP-10                                                                        | To perform Hopkinson's Test                                                            |
| EXP-11                                                                        | To perform the Brake Load Test                                                         |
| EXP-12                                                                        | Calculate the power rating of DC machines.                                             |
| EXP-13                                                                        | To determine losses and efficiency of DC machines                                      |

**## Note:** At least ten experiments should be performed in semester.

# **Course Outcomes (CO):**

On successful completion of this course, the learner will be able to

| CO1 | BELE-2471.1 | Acquire skills to understand all types of dc machines |
|-----|-------------|-------------------------------------------------------|
| CO2 | BELE-2471.2 | Ability to analyze the speed control of machine       |

| CO3 | BELE-2471.3 | Determine the performance characteristics of DC shunt motor and DC    |
|-----|-------------|-----------------------------------------------------------------------|
|     |             | compound motors.                                                      |
| CO4 | BELE-2471.4 | Determine the performance characteristics of DC machine by conducting |
|     |             | direct and indirect tests                                             |

# SUBJECT TITLE: DIGITAL ELECTRONICS LABORATORY **SUBJECT CODE: BELE-2472 SEMESTER: 4 CONTACT HOURS/WEEK:**

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

# **Internal Assessment: 50 External Assessment: 50**

# **Course objectives**

- **1.** To give students a practical knowledge about all types of digital circuits.
- 2. To give students a working knowledge to connect digital circuits and verify their truth tables.
- 3. To give students acknowledge about integrated circuits of different combinational and sequential circuits.

| Sr. No | Contents                                                                                                                                                              |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXP-1  | To Study Logic Gates: Truth-table verification of OR, AND, NOT, XOR, NAND<br>and NOR gates and realization of OR, AND, NOT and XOR functions using<br>universalgates. |
| EXP-2  | To design Half Adder using Logic gates on breadboard.                                                                                                                 |
| EXP-3  | To design Full Adder using Logic gates on breadboard.                                                                                                                 |
| EXP-4  | To design Half Subtractor using Logic gates on breadboard.                                                                                                            |
| EXP-5  | To design Full Subtractor using Logic gates on breadboard.                                                                                                            |
| EXP-6  | To design 4-Bit Binary-to-Gray Code Converter on breadboard.                                                                                                          |
| EXP-7  | To design 4-Bit Gray-to-Binary Code Converter on breadboard.                                                                                                          |
| EXP-8  | To study and design 4-Bit magnitude comparator using logic gates on breadboard.                                                                                       |
| EXP-9  | Design and verification of Truth-table of multiplexer.                                                                                                                |
| EXP-10 | Realization of Half adder and Full adder usingMUX.                                                                                                                    |
| EXP-11 | Design and verification of Truth-table of Demultiplexer.                                                                                                              |
| EXP-12 | Realization of half subtractor and full subtractor usingDEMUX.                                                                                                        |
| EXP-13 | To study and verify Truth-table of RS, JK, D, JK Master Slave FlipFlops.                                                                                              |
| EXP-14 | To design MOD-7 Synchronous up-counter using JK/RS/D FlipFlops.                                                                                                       |
| EXP-15 | To Study different shift registers: SIPO, SISO, PIPO, and PISO.                                                                                                       |
| EXP-16 | To Study digital logicfamilies.                                                                                                                                       |

## LIST OF EXPERIMENTS

## **Course Outcomes:**

| CO1 | BELE-2472.1 | Become familiar to logic gates ,digital signals, truth table and conversions                                              |  |  |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| CO2 |             | Learn how to minimize the hard ware needs for digital circuit ,put them into practice and use them for real time circuit. |  |  |
| CO3 |             | Ability to test and validate the truth table and working condition of combinational and sequential circuits               |  |  |
| CO4 | BELE-2472.4 | Working knowledge to study output input wave form on oscilloscope                                                         |  |  |

On successful completion of this course, the learner will be able to

**Note:** At least ten experiments should be performed in semester

# SUBJECT TITLE: CONTROL SYSTEM LABORATORY SUBJECT CODE: BELE-2473 SEMESTER: 4 CONTACT HOURS/WEEK: Lecture (L) Tutorial

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

# Internal Assessment: 50 External Assessment: 50

# **Course Objectives**

- 1. To understand the basics of MATLAB software.
- 2. To introduce variety of control system strategies.
- 3. To comment about t he stability of designed systems.

# LIST OF EXPERIMENTS

| Sr. No | Contents                                                                                   |  |
|--------|--------------------------------------------------------------------------------------------|--|
| EXP-1  | Familiarization with MATLAB control system toolbox, MATLAB Simulink toolbox                |  |
|        | andPSPICE.                                                                                 |  |
| EXP-2  | Determination of step response for first order and second order system with unity          |  |
|        | feedback and their display on CRO. Calculation and verification of time constant,          |  |
|        | peak overshoot, setting time etc. from the response.                                       |  |
| EXP-3  | Simulation of step response and impulseresponsefortype-0, type-1 and type-2 systems        |  |
|        | with unity feedback using MATLAB and PSPICE.                                               |  |
| EXP-4  | Determination of Root Locus, Bode-Plot, Nyquist Plot using MATLAB-Control                  |  |
|        | system toolbox for 2 <sup>nd</sup> order system. Determination of different control system |  |
|        | performance indices from theplots.                                                         |  |
| EXP-5  | Experimental determination of approximate transfer functions from Bode plot.               |  |
| EXP-6  | Evaluation of steady state error, settling time, percentage peak overshoot, gain           |  |
|        | margin, phase margin, with addition of lead compensator and by compensator in              |  |
|        | forward path transfer function for unity feedback control system using PSPICE.             |  |
| EXP-7  | Design of a second order linear time invariant control system and study of system          |  |
|        | response with unit step input.                                                             |  |
| EXP-8  | To study the characteristics of potentiometers and to use 2-potentiometers as an error     |  |
|        | detector in a control system.                                                              |  |
| EXP-9  | To study the synchro Transmitter-Receiver set and to use it as an errordetector.           |  |
| EXP-10 | To study the Speed-Torque characteristics of an AC Servo Motor and to explore its          |  |
|        | applications.                                                                              |  |
| EXP-11 | To study the Speed-Torque characteristics of a DC Servo Motor and explore its              |  |
|        | applications.                                                                              |  |
| EXP-12 | To study various electro-mechanical transducers i.e. resistive, capacitive and             |  |
|        | inductive transducers.                                                                     |  |
| EXP-13 | To study the speed control of an A.C. Servo Motor using a closed loop and an open          |  |
|        | loop system.                                                                               |  |
| EXP-14 | To study the operation of a position sensor and study the conversion of position in to     |  |
|        | correspondingvoltage                                                                       |  |

On successful completion of this course, the learner will be able to

| CO1 | BELE-2473.1 | Demonstrate the response of first order and second order systems with various standard test signals. |
|-----|-------------|------------------------------------------------------------------------------------------------------|
| CO2 | BELE-2473.2 | Understand concepts of time domain analysis of series RLC Circuit                                    |
| CO3 | BELE-2473.3 | Examine the DC motors time response and determine the transfer function                              |
| CO4 | BELE-2473.4 | Evaluate the stability of control systems                                                            |

**#Note:** At least ten experiments should be performed in semester.

# SUBJECT TITLE: ELECTRICAL MACHINES-II SUBJECT CODE: BELE-3501 SEMESTER: 5<sup>th</sup> CONTACT HOURS/WEEK: Lecture (L) 7

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 2            | 0             | 4          |

**Internal Assessment: 40** 

# End Term Exam: 60

# **Duration of Exam; 3 Hrs**

# **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

## **Course Objectives:**

- **1.** To impart knowledge of the constructional features and principle of operation of three-phase and single-phase induction machines.
- **2.** To impart knowledge about methods of starting and speed control of induction motors.
- **3.** To make the students aware about construction, principle of operation and applications of special purpose motors.

| Sr. No   | Contents                                                                       |  |  |  |
|----------|--------------------------------------------------------------------------------|--|--|--|
| UNIT-I   | Three Phase Induction Motors: Constructional features, Production of           |  |  |  |
|          | rotating field in space distributed three-phase winding, Principle of          |  |  |  |
|          | operation, Concept of slip, rotor frequency, current, torque and power         |  |  |  |
|          | output, Types of induction motors, Analogy between induction motor and         |  |  |  |
|          | transformer, no load and blocked rotor test, Circle diagram, Equivalent        |  |  |  |
|          | circuit parameters, Phasor diagram, Torque-slip characteristics, Effect of     |  |  |  |
|          | rotor circuit resistance, Crawling and Cogging, Cage motors (double cage       |  |  |  |
|          | and deep bar motor).                                                           |  |  |  |
| UNIT-II  | Starting Methods and Speed Control: Starting methods of squirrel cage          |  |  |  |
|          | and slip ring induction motor, Different speed control methods, effect of      |  |  |  |
|          | voltage injection in rotor circuit of slip ring induction motor.               |  |  |  |
|          | Induction Generator: Isolated and Grid mode operation, method of               |  |  |  |
|          | excitation, performance characteristics of three-phase self-excited induction  |  |  |  |
|          | generator, introduction to doubly fed induction generator.                     |  |  |  |
| UNIT-III | Single Phase Motors: Introduction, Double revolving field theory, types of     |  |  |  |
|          | single phase motors (Split phase, capacitor start, capacitor run, capacitor    |  |  |  |
|          | start and run) and their characteristics, shaded pole motor: working principle |  |  |  |
|          | and characteristics. Reluctance motor: construction, principle of operation    |  |  |  |

|         | and applications.                                                                                                                                                                                                                                           |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-IV | <b>Special Purpose Motors:</b> Stepper Motor: construction, principle of operation and applications. Linear Induction Motor: construction, principle of operation and applications. Universal Motor: construction, principle of operation and applications. |

| CO1 | BELE-3501.1 | Identify alternator types ,and appreciate their performance.                                                      |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-3501.2 | Skills to analyse the performance of the asynchronous machines using the phasor diagrams and equivalent circuits. |
| CO3 | BELE-3501.3 | Gain knowledge of speed control and testing of asynchronous machines.                                             |
| CO4 | BELE-3501.4 | Select appropriate asynchronous machine for any application and appraise its significance                         |

- 1. A.E. Fitzgerald, C. Kingsley and S.D. Umans, 'Electric Machinery', McGrawHill.
- 2. E.H. Langsdorff, 'Principles of A.C. Machines', McGraw Hill.
- 3. I.J. Nagrath and D.P. Kothari, 'Electrical Machines', Tata McGraw Hill.
- 4. P.S. Bimbhra, 'Electrical Machinery', Khanna Publishers.
- 5. M.G. Say,' Alternating Current Machines', Sir Isaac Pitman and Sons Ltd.

## SUBJECT TITLE: POWER ELECTRONICS & DRIVES SUBJECT CODE: BELE-3502 SEMESTER: 5 CONTACT HOURS/WEEK: Lecture (L) Tutorial

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

# Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

# **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives:**

- **1.** To make the students aware about the power electronic devices and construction, operation and characteristics of most popular member of thyristor family i.e. SCR.
- 2. To acquaint them with basic concepts of operation of different types of convertors.
- 3. To impart knowledge about application of converters to motor drives.

| Sr. No   | Contents                                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-I   | <b>Introduction:</b> Thyristor family and SCR, Constructional features of SCR, its static and dynamic characteristics, turn-on and turn-off methods and firing |
|          | circuits, Ratings and protection of SCR'S, series and parallel operation,                                                                                      |
|          | commutation circuits.                                                                                                                                          |
| UNIT-II  | Phase Controlled Converters: Principle of phase control, single phase and                                                                                      |
|          | three phase converter circuits with different types of loads, dual converters and                                                                              |
|          | their operation.                                                                                                                                               |
|          | DC Choppers: Principle of chopper operation, control strategies, types of                                                                                      |
|          | choppers, step up and step down choppers, voltage, current and load-                                                                                           |
|          | commutated choppers.                                                                                                                                           |
| UNIT-III | Inverters: Single phase Voltage source bridge inverters, Modified Mc-Murray                                                                                    |
|          | half bridge inverter, series inverters, three phase bridge inverters with 180 <sup>0</sup> and                                                                 |
|          | 120 <sup>0</sup> modes. Single phase PWM inverters, Current source inverters.                                                                                  |
|          | AC Voltage Controllers: Types of single-phase voltage controllers, single-                                                                                     |
|          | phase voltage controller with R and RL type of loads.                                                                                                          |
|          | Cycloconverters: Principle of operation, single phase to single phase step up                                                                                  |
|          | and step down Cycloconverters, three phase to single phase cycloconverters.                                                                                    |
| UNIT-IV  | DC Motor Drives: DC motor drive-starting, braking, transient analysis, speed                                                                                   |
|          | control, controlled rectifier converters for DC drives and chopper fed DC drives.                                                                              |
|          | AC Motor Drives Induction motor drive-starting, braking, transient analysis,                                                                                   |
|          | speed control, ac controller fed induction motor, voltage source inverter, current                                                                             |
|          | source inverter and cyclo-converter fed induction motor drive.                                                                                                 |

| CO1 | BELE-3502.1  | The students will learn the operation and characteristics of power electronic devices                                           |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE -3502.2 | The students will be able to analyse operation of different types of converter circuits such as; AC-DC, DC-DC, AC-AC and DC-AC. |
| CO3 | BELE -3502.3 | Understand the concepts about parallel operation and transient conditions of alternators.                                       |
| CO4 | BELE -3502.4 | Design single phase and three phase inverters.                                                                                  |

- 1. G.K. Dubey, S.R. Doradla, A. Joshi, R.N.K. Sinha, 'Thyristorised Power Controllers', <u>New Age International (P) Limited</u>, <u>Publishers</u>, 2004.
- 2. M. Rashid, 'Power Electronics', Prentice Hall of India Private Ltd., 2006.
- 3. P.S. Bimbhra, 'Power Electronics', Khanna Publishers, 2004.
- 4. Bimal Bose, 'Power Electronics and Motor Drives', Academic Press, 2006.
- 5. P.C. Sen, 'Power Electronics', Tata McGraw Hill Company Ltd., New Delhi, 1992.
- C. Rai Harish, 'Power Electronics and Industrial Applications', 1<sup>st</sup>Edn.,<u>CBS</u> <u>Publishers& Distributors Pvt Ltd.</u>, 2018.

# SUBJECT TITLE: GENERATION AND ECONOMICS OF ELECTRIC POWERSUBJECT CODE: BELE-3503SEMESTER: 5CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practical (P)Creen

| Lecture (L) | <b>Tutorial</b> (T) | <b>Practical</b> ( <b>P</b> ) | Credit (C) |
|-------------|---------------------|-------------------------------|------------|
| 3           | 1                   | 0                             | 4          |

# Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

## **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

## **Course Objectives:**

- 1. To familiarize the students with different types of loads and load curves.
- **2.** To apprise them with different types of costs involved in power plant and tariffs imposed on the electricity consumers
- 3. To impart knowledge about selection and economic operation of steam plants.
- 4. To impart knowledge about hydrothermal coordination

| Sr. No   | Contents                                                                            |  |  |  |
|----------|-------------------------------------------------------------------------------------|--|--|--|
| UNIT-I   | Loads and Load Curves: Types of load (fixed voltage loads, resistive loads,         |  |  |  |
|          | Inductive motor loads, mechanical load), effect of load on supply voltage,          |  |  |  |
|          | maximum demand, group diversity factor, peak diversity factor, types of load,       |  |  |  |
|          | chronological load curves, load-duration curve, mass curves, load factor, capacity  |  |  |  |
|          | factor, utilization factor, base load and peak load plants, load forecasting.       |  |  |  |
| UNIT-II  | Power Plant Economics: Capital cost of plants, annual fixed cost, operating costs   |  |  |  |
|          | and effect of load factor on cost of energy, depreciation, tariffs and power factor |  |  |  |
|          | improvement, objectives of tariff making, different types of tariff (domestic,      |  |  |  |
|          | commercial, agricultural and industrial loads). Need for power factor improvement,  |  |  |  |
|          | power factor improvement using capacitors, determination of economic power          |  |  |  |
|          | factor.                                                                             |  |  |  |
| UNIT-III | Selection of Plant: Plant location, plant size, number and size of units in plants, |  |  |  |
|          | economic comparison of alternatives based on annual cost, rate of return, present   |  |  |  |

|         | worth and capitalized cost methods. Economic operation of steam plants, methods                                                                                    |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | of loading turbo-generators, input- output curve, heat rate, incremental cost,                                                                                     |  |  |
|         | method of Lagrangian multiplier, effect of transmission losses, co-ordination                                                                                      |  |  |
|         | equations, and iterative procedure to solve co-ordination equations.                                                                                               |  |  |
|         | Hydro-Thermal Co-ordination: Advantages of combined working of Run-off                                                                                             |  |  |
| UNIT-IV | Hydro-Thermal Co-ordination: Advantages of combined working of Run-off                                                                                             |  |  |
| UNIT-IV | <b>Hydro-Thermal Co-ordination:</b> Advantages of combined working of Run-off<br>River plant and steam plant, reservoir hydro plants and thermal plants, long-term |  |  |
| UNIT-IV |                                                                                                                                                                    |  |  |
| UNIT-IV | River plant and steam plant, reservoir hydro plants and thermal plants, long-term                                                                                  |  |  |

| CO1 | <b>BELE-3503.1</b> Understand how electricity is generated and how it affects people. |                                                                             |  |
|-----|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| CO2 | <b>BELE-3503.2</b> knowledge of different types of loads and related terminology.     |                                                                             |  |
| CO3 | BELE-3503.3                                                                           | Demonstrate the working operation and maintenance of substation             |  |
| CO4 | BELE-3503.4                                                                           | Get knowledge about co-ordinated operation of Hydro and Steam power plants. |  |

- 1. M.V. Deshpande, 'Power Plant Engineering', Tata McGraw Hill, 2004.
- 2. M.M. EI-Wakit, 'Power Plant Engineering', McGraw Hill, USA, 2010.
- 3. D.P. Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw Hill, 2008
- S.C. Arora and S. Dom Kundwar, 'A Course in Power Plant Engineering', <u>6<sup>th</sup>RevisedEdn.,Dhanpat Rai</u>,2011-12.
- 5. P.K. Nag, 'Power Plant Engineering', Tata McGraw Hill, 2014.
- 6. B.R. Gupta, 'Generation of Electrical Energy', S. Chand, 2017.

# SUBJECT TITLE: ELECTROMAGNETIC FIELD THEORSUBJECT TITLE: ELECTROMAGNETIC FIELD THEORY SUBJECT CODE: BELE-3504 SEMESTER: 5 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Practical (P) C

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

# Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

## **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives:**

- 1. To provide the knowledge about the time varying fields and Maxwell's equations.
- **2.** To provide knowledge about the propagation of electromagnetic wave along different mediums.
- 3. Study of physical concept and all the important fundamental parameters of waveguides.

| Sr. No   | Contents                                                                               |  |
|----------|----------------------------------------------------------------------------------------|--|
| UNIT-I   | Review of Electrostatic and Magnetostatic Fields: Review of vector algebra,            |  |
|          | Review of Cartesian, Cylindrical and spherical coordinate systems, Introduction        |  |
|          | to del operator, Use of del operator as gradient, divergence, curl. Introduction to    |  |
|          | coulomb's law, Gaussian law. Laplace's and Poisson's equation in various               |  |
|          | coordinate systems. Introduction to Ampere's law, Magnetic vector potential.           |  |
| UNIT-II  | Time Varying Fields and Maxwell's Equations: Equation of continuity,                   |  |
|          | Inconsistency of Ampere's law for time varying fields, Concept of displacement         |  |
|          | current, Maxwell's equation in integral and differential form (for static fields, time |  |
|          | varying fields, free space, good conductors, harmonically varying fields),             |  |
|          | Poynting theorem.                                                                      |  |
| UNIT-III | Uniform Plane Waves: Introduction, Uniform plane wave propagation, Wave                |  |
|          | equations: Wave equations for free space, Wave equations for conductors.               |  |
|          | Transverse nature of uniform plane waves, Reflection of electromagnetic waves          |  |

|         | by perfect conductor and perfect dielectric, wave impedance and propagation constant, depth of penetration, surface impedance. |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| UNIT-IV | Wave Guides: Introduction, simple waveguides between two infinite and parallel                                                 |
|         | conducting plates, Transverse Electric (TE) Waves or H-Waves, Transverse                                                       |
|         | magnetic (TM) Waves or E-Waves, Characteristics of TE and TM waves,                                                            |
|         | Transverse Electromagnetic (TEM) waves and its characteristics                                                                 |

| CO1 | BELE-3504.1 | Understand concepts of electromagnetic field theory and fundamental field equations.                                 |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-3504.2 | Get knowledge of various application of the boundary conditions for fields.                                          |
| CO3 | BELE-3504.3 | Have skills to identify, formulates and solves engineering problems related to electromagnetic fields.               |
| CO4 | BELE-3504.4 | Determine and describe the Dynamic and static magnetic and electric fields for important technologically structures: |

- 1. Jordan and Balmain, 'Electromagnetic Wave', PHI and Radiation System, 2010.
- 2. Kraus, 'Electromagnetics', T.M.H.2003.
- W.H. Hayt and J.A. Buck, 'Problem and Solutions in Electromagnetics', <u>Tata</u> <u>McGrawHill</u>, 1999.
- 4. W.H. Hayt, 'Engineering Electromagnetic', <u>Tata McGraw Hill</u>,2012.

# SUBJECT TITLE: MICROPROCESSORS AND INTERFACING SUBJECT CODE: BELE-3505 SEMESTER: 5 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Pr

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

#### **Internal Assessment: 40**

## End Term Exam: 60

# **Duration of Exam; 3 Hrs**

# **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

## **Course Objectives:**

- 1. To understand the basic architecture of 8 and 16-bit microprocessor.
- 2. To understand interfacing of microprocessor with memory and peripheral chips involving system design.
- **3.** To understand the techniques for faster execution of instructions and improve the performance of microprocessor.
- 4. To understand the concepts of multi core processor.

| Sr. No   | Contents                                                                             |  |
|----------|--------------------------------------------------------------------------------------|--|
| UNIT-I   | Introduction: Introduction to microprocessor, Intel 8085 microprocessor architecture |  |
|          | and pindiagram, Data flow to/from memory, from/to microprocessor unit, multiplexing  |  |
|          | and de-multiplexing of address data bus. Bus timings, T state, machine cycle, timing |  |
|          | diagram, Memories- RAM, DDR/SDR, ROM, EROM, EPROM, EEPROM, Flash                     |  |
|          | Memory, Cache Memory.                                                                |  |
| UNIT-II  | Programming with 8085: Addressing modes, Detail study of 8085 instruction set. I/O   |  |
|          | andMemory mapping, Interfacing I/O Devices, Interrupts, stack and subroutines,       |  |
|          | Counter and Time, Delays, Code conversion, BCD Arithmetic and 16-bit data            |  |
|          | operations, Programming techniques with additional instructions, Program Debugging.  |  |
| UNIT-III | Interfacing with 8085: Architecture, interfacing and programming of                  |  |
|          | 8155/8156(programmable I/O port timer), 8251(universal synchronous, asynchronous     |  |

|         | receiver transmitter), 8253/ 8254 (programmable interval timer), 8255 (programmable                                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | peripheral interface), 8279 (keyboard display controller), and 8257 (direct memory                                                                                     |
|         | access controller).                                                                                                                                                    |
| UNIT-IV | Other Microprocessor and interfacing: 8086 -Block diagram, Architecture,                                                                                               |
|         |                                                                                                                                                                        |
|         | pipelining, flagregister, register bank operation, memory segmentation, addressing                                                                                     |
|         | pipelining, flagregister, register bank operation, memory segmentation, addressing modes. Introduction to 80186, 80286, 80386, 80486 and Pentium and their comparison, |

| CO1 | BELE-3505.1 | Write program to run on 8085 microprocessor based systems.                                          |
|-----|-------------|-----------------------------------------------------------------------------------------------------|
| CO2 | BELE-3505.2 | Design system using memory chips and peripheral chips.                                              |
| CO3 | BELE-3505.3 | Understand various techniques for faster execution of instructions and improve speed of operations. |
| CO4 | BELE-3505.4 | Build systems using microcontrollers for real time applications.                                    |

- 1. R.S. Gaonkar, 'Microprocessor Architecture Programming and Applications with the 8085' <u>Penram International Pub.</u>
- 2. D.V. Hall, 'Microprocessor and Interfacing Programming and Hardware', <u>McGraw Hill</u> <u>Co.</u>
- **3.** Barry B. Brey, 'The Intel Microprocessors, Architecture Programming and Interfacing, <u>PHIPublications.</u>
- 4. B. Ram, Dhanpat Ra, 'Fundamentals of Microprocessor and Microcontrollers'.

# SUBJECT TITLE: ELECTRICAL MACHINES-II LAB. SUBJECT CODE: BTEE-3571 SEMESTER: 5 CONTACT HOURS/WEEK: Lecture (L) Tutoria

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

**Internal Assessment: 50** 

# End Term Exam: 50

## **Course Objectives:**

- **1.** To plot speed-torque characteristics of three-phase and single-phase induction motors.
- **2.** To obtain equivalent circuit parameters of three-phase and single-phase induction motors.
- **3.** To study speed control of induction motors using different techniques.
- 4. To plot characteristics of a three-phase alternator and a synchronous motor.
- 5. To synchronize two 3-phase alternators by different methods

# LIST OF EXPERIMENTS

| Sr. No        | Contents                                                                          |
|---------------|-----------------------------------------------------------------------------------|
| EXP-1         | To perform load-test on three-phase induction motor and to plot speed-torque      |
|               | characteristics                                                                   |
| EXP-2         | To perform no-load and blocked rotor test on three-phase induction motor to       |
|               | obtain equivalent circuit parameters and to draw circle diagram.                  |
| EXP-3         | To study the speed control of three-phase induction motor by Kramer's method.     |
| EXP-4         | To study the speed control of three-phase induction motor by cascading of two     |
|               | induction motors.                                                                 |
| EXP-5         | To study star- delta starters and                                                 |
|               | a. To draw electrical connection diagram.                                         |
|               | b. To start the three-phase induction motor using it.                             |
|               | c. To reverse the direction of three-phase induction motor                        |
| EXP-6         | To start a three-phase slip ring induction motor by inserting different levels of |
|               | resistance in the rotor circuits and to plot speed- torque characteristics.       |
| EXP-7         | To perform no-load and blocked rotor test on single-phase induction motor         |
|               | and to determine the parameters of equivalent circuit.                            |
| EXP-8         | To perform load test on single-phase induction motor and plot speed-              |
|               | torque characteristics.                                                           |
| EXP-9         | To perform no load and short circuit test on three-phase alternator and draw      |
|               | open and short circuit characteristics.                                           |
| <b>EXP-10</b> | To find voltage regulation of an alternator by zero power factor (ZPF) method.    |
| <b>EXP-11</b> | To study effect of variation of field current upon the stator current and power   |
|               | factor of synchronous motor running at no load and draw V and inverted V          |
|               | curves of motor.                                                                  |
| EXP-12        | To synchronise two 3-phase alternators using dark lamp method, and two-bright     |
|               | & one dark lamp method                                                            |
| EXP-13        | To start a synchronous motor using appropriate method.                            |

# **Course Outcomes:**

On successful completion of this course, the learner will be able to

| CO1 | BTEE-3571.1 | Obtain equivalent circuit parameters of single-phase and three- phase<br>Induction motors.                              |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------|
| CO2 | BTEE-3572.2 | Control speed of Induction motors by different methods.                                                                 |
| CO3 | BTEE-3573.3 | Find voltage regulation of an alternator by using various tests.                                                        |
| CO4 | BTEE-3574.4 | Draw open and short circuit characteristics of three-phase alternator and V and inverted V curves of synchronous motor. |

**# Note:** At least ten experiments should be performed in semester

# SUBJECT TITLE: POWER ELECTRONICS LAB. SUBJECT CODE: BELE-3572 SEMESTER: 5 CONTACT HOURS/WEEK:

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

#### Internal Assessment: 50 End Term Exam: 50

## **Course Objectives:**

- 1. To obtain the characteristics of SCR and UJT and to obtain triggering pulses for them.
- **2.** To verify the performance of various converter circuits by measuring the currents and voltages at different points in the circuit and to display their waveforms.
- **3.** To control speed of motors by using thyristors.

# LIST OF EXPERIMENTS

| Sr. No        | Contents                                                                                                                                                |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXP-1         | To obtain V-I characteristics of SCR and measure latching and holding currents.                                                                         |
| EXP-2         | To plot V-I Characteristics of UJT                                                                                                                      |
| EXP-3         | To obtain triggering wave forms for SCR using R and RC firing circuits.                                                                                 |
| EXP-4         | To obtain output voltage waveforms of single phase half wave controlled rectifier for R-L load.                                                         |
| EXP-5         | To obtain output voltage wave forms for single phase full-wave controlled rectifiers with resistive and inductive loads.                                |
| EXP-6         | To simulate three phase bridge rectifier and draw load voltage and load current waveform for resistive and inductive loads.                             |
| EXP-7         | To study different types of chopper circuits and obtain waveforms for at least one of them                                                              |
| EXP-8         | To simulate single phase inverter using different modulation techniques and obtain load voltage and load current waveform for different types of loads. |
| EXP-9         | To simulate single phase full wave ac voltage controller and draw load voltage and load current waveforms for inductive load.                           |
| <b>EXP-10</b> | To study single phase cycloconverter.                                                                                                                   |
| <b>EXP-11</b> | To study speed control of induction motor using thyristor                                                                                               |
| EXP-12        | To study speed control of DC motor using thyristor.                                                                                                     |

Course Outcomes: On successful completion of this course, the learner will be able to

| CO1 | BELE-3572.1 | Verify the characteristics of SCR and UJT and triggering pulses for them.                   |
|-----|-------------|---------------------------------------------------------------------------------------------|
| CO2 |             | Understand Control of Dc motor using single phase half and full controlled bridge rectifier |

| CO3 | BELE-3572.3 | Visualize and analyse the performance of various converter circuits. |
|-----|-------------|----------------------------------------------------------------------|
| CO4 | BELE-3572.4 | Control the speed of motors using thyristors.                        |

**# Note:** At least ten experiments should be performed in semester.

# SUBJECT TITLE: POWER SYSTEM-II (SWITCHGEAR AND PROTECTIONSUBJECT CODE: BELE-3601SEMESTER: 6CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practical (P)Cr

| Lecture (L) | Tutorial (T) | <b>Practical</b> (P) | Credit (C) |
|-------------|--------------|----------------------|------------|
| 3           | 1            | 0                    | 4          |

# Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

## **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

# **Course Objectives:**

- 1. To provide knowledge about principle and components of protective system.
- 2. To impart knowledge about basics of Substation, Isolator and Fuses
- 3. To provide knowledge about operating Principle, types of Relays and Circuit Breakers
- **4.** To provide knowledge about protection of Feeder, Bus bar, Generator and Transformer

| Sr. No  | Contents                                                                               |  |  |
|---------|----------------------------------------------------------------------------------------|--|--|
| UNIT-I  | Introduction to Components of Protection System: Need for Protective System,           |  |  |
|         | Nature and Causes of Faults, Types and Effects of Faults, Zones of Protection,         |  |  |
|         | Primary and Backup Protection, Essential Qualities of Protection, Basic Principle of   |  |  |
|         | Protective System, Components and Classification of Protective System, Brief Idea      |  |  |
|         | of Instrument Transformers, Circuit Breakers, Relays and related Terminologies.        |  |  |
|         | Substation, Isolator and Fuses: Functions, Types, Classification, Main Equipment,      |  |  |
|         | Layout, Bus-bar Arrangement of Substation. Operation, Types and Rating of              |  |  |
|         | Isolators. Types, Rating and Characteristics of Fuses.                                 |  |  |
| UNIT-II | Circuit Breakers: Circuit Breaker Ratings, Arc Initiation and their Interruption       |  |  |
|         | Methods, Arc Quenching Theories, Re-striking voltage, Recovery Voltage, RRRV,          |  |  |
|         | Plain Break Oil Circuit Breaker, Minimum Oil Circuit Breaker, Air Circuit Breaker,     |  |  |
|         | Air Blast Circuit Breaker, Vacuum Circuit breaker and SF <sup>6</sup> Circuit Breaker. |  |  |
|         | Introduction to D.C. Circuit Breaker.                                                  |  |  |
|         | Protective Relays: Introduction, Classification, Constructional Features; and          |  |  |

|          | Characteristics of Electromagnetic, Induction, Thermal, Over-current relays,            |
|----------|-----------------------------------------------------------------------------------------|
|          | Directional Over Current Relay, Distance relays (Impedance, Reactance and Mho           |
|          | relay), Differential Relays, Trans-lay, Negative sequence relay, introduction to Static |
|          | and Numerical Relays.                                                                   |
| UNIT-III | Feeder or Transmission Line Protection: Over current Protection by Time Graded          |
|          | System, Current Graded and Time- Current Graded System, Protection of Parallel          |
|          | Feeder, Protection of Ring Mains, Over Current Earth Fault Protection, Distance         |
|          | Protection of Transmission lines (Impedance, Reactance and Mho Relay),                  |
|          | Comparison between Distance Relays, Differential and Percentage Differential            |
|          | Protection, Pilot Relaying Protection of Feeder.                                        |
|          | Bus-Bar Protection: Differential Protection of Bus Bars                                 |
| UNIT-IV  | Transformer Protection: Over current protection, percentage differential                |
|          | protection, incipient faults in transformers, inter-turn fault, protection against over |
|          | fluxing.                                                                                |
|          | Generator Protection: Various faults and abnormal operating conditions, protection      |
|          | against unbalanced loading, over speeding, loss of excitation, loss of prime mover.     |

| CO1 | BELE-3601.1 | Understand about basic components of power system protection system            |
|-----|-------------|--------------------------------------------------------------------------------|
| CO2 | BELE-3601.2 | Know about basics of Substation, Isolator and Fuses                            |
| CO3 | BELE-3601.3 | Understand about Principle, Operation and types of Relays and Circuit Breakers |
| CO4 | BELE-3601.4 | Know about Protection of Feeder, Bus bar, Generator and Transformer            |

- 1. C.L. Wadhwa, 'Electrical Power System', New Age International (P) Ltd.
- 2. D.N. Badri Ram, D.N. Vishakarma, 'Power System Protection and Switchgear'.
- 3. Ravindranath and M. Chander, 'Power System Protection and Switchgear'.
- 4. Dahiya and Attri, 'Substation Engineering', Khanna Publishers
- 5. B.R. Gupta, 'Power System Analysis and Design', S. Chand & Company (P) Ltd.
- 6. Nagrath and Kothari, 'Modern Power System Analysis', Tata McGraw Hill.
- 7. J. Grainger John and Jr. W.D. Stevenson, 'Power System Analysis', McGraw Hill, 1994.
- 8. Sunil S. Rao, 'Switchgear Protection and Power Systems', Khanna Publishers.
- 9. S.L. Uppal, 'Electrical Power', Khanna Publishers.

# SUBJECT TITLE: ELECTRICAL POWER UTILIZATION SUBJECT CODE: BELE-3602 SEMESTER: 6 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

# Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

## **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives:**

- **1.** To acquire knowledge about various elements of A.C and D.C electric motor drives and their characteristics.
- 2. To acquire detailed knowledge about electric traction systems.
- 3. To know various phenomena related to electrolytic processes and illumination.

| Sr. No  | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-I  | <b>Electric Drives</b> : Introduction concept of electric drives, classification of electric drives, nature of load, factors effecting selection of drive, Running characteristics of D.C, Series and shunt motor, 3-phase induction motor, 3-phase synchronous motor and A.C series motors, starting methods of D.C series and shunt motors, starting methods of 3-phaseinduction motor. Speed control of D.C series and shunt motors, examples, starting methods of B.C series and shunt motors, examples, Speed control of 3- phase induction motor, examples, Methods of electric braking of D.C motor, examples. Braking of 3-phase induction motor, Mechanical features of electric drives, heating and cooling curves, standard ratings of motors, examples Applications of electric drives and selection of drives for particular service, conservation approach to be considered. |
| UNIT-II | <b>Electrical Traction:</b> Introductions, different traction systems, various systems of electric traction. Locomotives, tramways, trolleys, track electrification, comparison between A.C and D.C systems of railway electrification, Types of speed and speed-time curves, examples. Mechanics of train movement, tractive effort, power, output, examples., Energy output from driving axles, energy output using simplified speed-time curves, examples, Factors affecting energy consumption, dead weight, accelerating weight, adhesion weight, examples., Traction motors and their characteristics, starting and speed control of D.C series and shunt motors, examples, Starting and speed control of A.C series and 3-phase induction motors, Braking of                                                                                                                        |

|          | traction motors and mechanical considerations, conservation approach to be considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-III | <b>Electrical Heating and Welding:</b> Advantages of electric heating, modes of transfer of heat, classification of electric heating methods, Resistances heating methods, requirements of heating elements, design of heating elements, methods of temperature control, problems, Induction heating: principle, types of induction furnaces, direct core type, vertical core type, indirect core type, core less type, advantages and disadvantages, eddy current heating, applications examples., Arc-furnace: principle, types, direct and indirect arc furnaces, power supply and control, condition for maximum output, examples., Dielectric heating: principles, advantages and disadvantages, edited of frequency, examples., Electric welding: different types of resistance welding and electric arc welding, conservation approach to be considered. |
| UNIT-IV  | <ul> <li>Electrolytic Process: Principle, Faradays laws of electrolysis, current efficiency, energy efficiency etc., Rating of metals, production of chemicals, Electro deposition, electroplating, power supply for electrolytic processes.</li> <li>Illumination: Nature of light, definitions, laws of illumination, different types of lamps, tungsten lamp, discharge lamp, sodium vapour lamp, fluorescent lamp, design of lighting scheme, methods of lighting, calculations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |

| CO1 | BELE-3602.1 | Knowledge about D.C and A.C electric motor drive characteristics and select them for particular traction systems. |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-3602.2 | Explore and control various electric heating and welding methods and processes                                    |
| CO3 | BELE-3602.3 | Understand the electrical attraction .                                                                            |
| CO4 | BELE-3602.4 | Students will be able to calculate illumination requirements                                                      |

- 1. R.K. Rajput, 'Utilization of Electrical Energy', Luxmi Publications Pvt. Ltd., 2006.
- 2. J.B. Gupta, 'Utilization of Electric Power & Electric Traction', <u>S.K. Kataria and Sons,Katson</u> <u>Books</u>,2013.
- **3.** C.L. Wadhwa, 'Generation, Distribution and Utilization of Electrical Energy', <u>NewageInternational Pvt. Ltd.</u>, <u>Publishers</u>, **2005**.

## SUBJECT TITLE: MICROCONTROLLER AND PLC SUBJECT CODE: BELE-3603 SEMESTER: 6th CONTACT HOURS/WEEK: Lecture (L) Tutor

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

# Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### **Objective and outcome of course:**

# **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks Learning Outcomes:

- **1.** The course describes Architecture of Microcontrollers, Programming with Application of Microcontroller, Advanced Microcontroller and Interfacing.
- **2.** It explains the Applications & Importance of PLC connection of PLC and a relay panel.
- **3.** It describes the block diagram and operation of a micro PLC, gives an idea of ladder programming.
- 4. It also explains how to select a PLC for a typical application.

| Sr. No   | Contents                                                                                  |  |
|----------|-------------------------------------------------------------------------------------------|--|
| UNIT-I   | Introduction: Microprocessor, Micro-controllers and their comparison. The 8051            |  |
|          | Architecture: Introduction, 8051 micro-controller hardware, input/ output, pins, ports    |  |
|          | and circuits, external memory, counters and timers, serial data input/ output, interrupts |  |
| UNIT-II  | 8051 Assembly Language Programming: The mechanics of programming, assembly                |  |
|          | language programming process, programming tools and techniques, instruction set           |  |
|          | (data moving, logical operations, arithmetic operations, jump and call instructions)      |  |
|          | 8051 Microcontroller Design: Micro-controller specification, external memory and          |  |
|          | memory space decoding, reset and clock circuits, expanding input and output (I/O),        |  |
|          | memory mapped I/O, memory address decoding, memory access times, testing the              |  |
|          | design, timing subroutines, lookup tables for the 8051, serial data transmission          |  |
| UNIT-III | Microcontroller Applications: Interfacing keyboards, displays, Digital-to-Analog          |  |
|          | (D/A) and Analog-to-Digital (A/D), multiple interrupts, serial data communications,       |  |
|          | introduction to the use of assemblers and simulators Embedded Systems: Introduction       |  |

|         | to PLDs and FPGA- architecture, technology and design issues, implementation of  |
|---------|----------------------------------------------------------------------------------|
|         | 8051 core.                                                                       |
| UNIT-IV | Programmable Logic Controllers (PLC): Introduction, operation of PLC, difference |
|         | between PLC and Hardwired system, difference between PLC and Computer, relay     |
|         | logic and ladder logic, ladder commands and examples of PLC ladder diagram       |
|         | realization, PLC timers, PLC counters, PLC classification                        |

| CO1 | BELE-3603.1 | Understand the architecture of microcontroller and understand the counter & timers. |
|-----|-------------|-------------------------------------------------------------------------------------|
| CO2 | BELE-3603.2 | Design the PLC ' architecture                                                       |
| CO3 | BELE-3603.3 | Know various application of the M C 8051                                            |
| CO4 | BELE-3603.4 | Implement PLC interfacing                                                           |

# **RECOMMENDED BOOKS:**

- **1.** Kenneth J Ayola, *The 8051 Micro Controller- Architecture, Programming and Application*, Penram International Publication
- 2. John B Peatman, Design with Micro Controller, Tata McGraw Hill
- **3.** Ray A. K. and Bhurchandi K. M., *Advanced Microprocessors and Peripherals; Architecture, Programming and Interfacing*, Tata McGraw Hill
- **4.** Mazidi M. A. and Mazidi J. G., *The 8051 Micro-controller and Embedded System*, Pearson Education.
- **5.** Udayashankara V. and Mallikarjunaswamy M.S., *8051 Microcontroller Hardware, Software and Applications*, TataMcGraw Hill Education Pvt. Ltd., (2010)
- 6. SurekhaBhanot, Process Control, Oxford Higher Education.
- 7. Otter, Job Dan, Programmable Logic Controller, P.H. International, Inc, USA
- 8. Dunning Gary, Introduction to PLCs, Tata McGraw Hill
- 9. Kumar Rajesh, Module on PLCs and their Applications, NITTTR

# SUBJECT TITLE: ELECTRICAL MACHINES-III SUBJECT CODE: BELE-3604 SEMESTER: 6 CONTACT HOURS/WEEK: Lecture (L) Tu

| Lecture (L) | Tutorial (T) | <b>Practical</b> (P) | Credit (C) |
|-------------|--------------|----------------------|------------|
| 3           | 2            | 0                    | 4          |

**Internal Assessment: 40** 

## End Term Exam: 60

# **Duration of Exam; 3 Hrs**

# **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

## **Course Objectives:**

- 1. To make the students aware about the general aspects of synchronous machines.
- **2.** To apprise the students about the construction, operation and characteristics of alternators and synchronous motors.
- **3.** To make them to understand the underlying aspects of parallel operation of alternators.

| <b>Contents</b> o | f Syllabus: |
|-------------------|-------------|
|-------------------|-------------|

| Sr. No   | Contents                                                                         |  |
|----------|----------------------------------------------------------------------------------|--|
| UNIT-I   | General Aspects: Construction and working principle of synchronous               |  |
|          | machines, Excitation systems, Production of sinusoidal electromotive force       |  |
|          | (EMF) and its equation, flux and magneto motive force (MMF), phasor              |  |
|          | diagrams, cylindrical and salient pole rotors, pitch factor, distribution factor |  |
| UNIT-II  | Alternators: Construction, Phasor diagram of cylindrical rotor alternator,       |  |
|          | ratings, armature reaction, determination of synchronous reactance; open-        |  |
|          | circuit and short- circuit characteristics, short-circuit ratio, short-circuit   |  |
|          | loss. Determination of voltage regulation: EMF, MMF and zero power               |  |
|          | factor method. Power flow through inductive impedance, Power-angle               |  |
|          | characteristics of cylindrical and salient pole synchronous machines, Two-       |  |
|          | reaction theory of salient pole machines, power factor control.                  |  |
| UNIT-III | Synchronous Motors: Operating characteristics, power-angle                       |  |
|          | characteristics, condition for maximum power, V-curves and inverted V-           |  |
|          | curves, methods of starting, synchronous motor applications, synchronous         |  |
|          | condenser, Hunting, damper windings, Hysteresis motors.                          |  |
| UNIT-IV  | Parallel Operation of Alternators: Conditions for synchronization of             |  |
|          | single phase and three phase alternators, conditions for parallel operation,     |  |
|          | synchronizing power, current and torque, effect of increasing excitation         |  |

| of one of the alternators, effect of change of speed of one of the |
|--------------------------------------------------------------------|
| alternators, effect of unequal voltages, load sharing.             |

| CO1 | BELE-3604.1 | Understand about the general aspects and winding terminology used in $3-\phi$ synchronous machines and $1-\phi$ synchronous motors. |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | BELE-3604.2 | Analyse the various methods of voltage regulation and EMF equations of alternators.                                                 |
| CO3 | BELE-3604.3 | Memorize power-angle characteristics of synchronous machines and<br>the working and characteristics of synchronous motors.          |
| CO4 | BELE-3604.4 | Understand the concepts about parallel operation and transient conditions of alternators.                                           |

- 1. P.S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2010.
- A.E. Fitzgerald, C. Kingsley and S.D. Umans, 'Electric Machinery', 6<sup>th</sup>Edn.,<u>McGrawHill</u>.
- 3. I.J. Nagrath and D.P. Kothari, 'Electrical Machines', 4thEdn., Tata McGraw Hill, 2011.
- M.G. Say, 'Alternating Current Machines', 5<sup>th</sup>Edn., <u>Sir Isaac Pitman and Sons Ltd.</u>, 2004.
- S. SarmaMulukutla and Mukesh K. Pathak, 'Electric Machines', 3<sup>rd</sup> Indian Reprint, <u>CENGAGE Learning</u>, 2009.

### SUBJECT TITLE: SIGNALS AND SYSTEMS SUBJECT CODE: BELE-3611 SEMESTER: 6 CONTACT HOURS/WEEK: Lecture (L

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

## Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Course Objectives:**

- **1.** To understand the classification of signals.
- 2. To apply Fourier series and Fourier Transformation to periodic and aperiodic signals.
- 3. To introduce the concepts of probability of occurrence of random events.
- 4. To understand different types of noise associated with signals.

#### **Contents of Syllabus:**

| Sr. No   | Contents                                                                                    |  |  |
|----------|---------------------------------------------------------------------------------------------|--|--|
| UNIT-I   | Introduction: Classification of Signals and Systems, Linear time invariant systems,         |  |  |
|          | Convolution, Representation of signals in terms of impulses, Signal Representation          |  |  |
|          | using Fourier Series, Complex and Exponential Fourier Series, Fourier Series                |  |  |
|          | Representation of Periodic Signals, Properties of Fourier series, Parseval's theorem.       |  |  |
| UNIT-II  | Signal Analysis: Periodic Signal Representation using Fourier Transforms, Fourier           |  |  |
|          | Transforms of Periodic Power Signals, Signal Transmission through Linear Networks,          |  |  |
|          | Convolution Theorem and its graphical interpretation, Sampling Theorem,                     |  |  |
|          | Correlation, Autocorrelation.                                                               |  |  |
| UNIT-III | <b>Probability:</b> Introduction to Probability Theory, Definition of Probability of Random |  |  |
|          | Events, Joint and Conditional Probability, Cumulative Distribution Function (CDF),          |  |  |
|          | Probability Density Functions (PDF) and Statistical Averages of random variables,           |  |  |
|          | introduction to random processes.                                                           |  |  |
| UNIT-IV  | Noise: Thermal Noise, Shot noise, Partition noise, Flicker noise, Gaussian Noise,           |  |  |
|          | Noise in Bipolar Junction Transistors (BJTs), FET noise, Equivalent input noise,            |  |  |
|          | Signal to Noise Ratio (SNR), Noise Temperature, Noise equivalent Bandwidth, Noise           |  |  |
|          | Figure, Experimental determination of Noise Figure.                                         |  |  |
|          |                                                                                             |  |  |

Course Outcomes: On successful completion of this course, the learner will be able to

CO1 BELE-3611.1 Learn about various types of signals and systems.

| CO2 | BELE-3611.2 | Explain state space analysis of LTI systems.                                                       |  |  |
|-----|-------------|----------------------------------------------------------------------------------------------------|--|--|
| CO3 | BELE-3611.3 | Evaluate various types of Fourier transformer and series for discrete and continuous time signals. |  |  |
| CO4 | BELE-3611.4 | Analyze signal and system properties like stability and causality using Laplace and Z transforms   |  |  |

# **Recommended Books**

- 1. V. Oppenheim Alan, 'Signals and Systems', Prentice Hall, 1997.
- 2. S. Haykins and B.V. Veen, 'Signals and Systems', John Wiley and Sons, 2007.
- M.J. Roberts, 'Fundamentals of Signals and Systems', SIE Edn., <u>McGraw</u> <u>HillEducation</u>, 2007.
- 4. B.P. Lathi, 'Linear Systems and Signals', Oxford University Press, 2009.
- 5. Sanjay Sharma, 'Signals and Systems', Katson Publishers, 2013.
- Rajeswari K. Raja, Rao B. Visvesvara, 'Signals and Systems', <u>PHI Learning Pvt.</u> <u>Ltd.</u>, 2014.
- 7. M. Nahvi, 'Signals and Systems', McGraw Hill Education, 2015.

# SUBJECT TITLE: FLEXIBLE AC TRANSMISSION SYSTEM DEVICESSUBJECT CODE: BELE-3612SEMESTER: 6CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practical (P

| Lecture (L) | <b>Tutorial</b> (T) | <b>Practical</b> (P) | Credit (C) |
|-------------|---------------------|----------------------|------------|
| 3           | 1                   | 0                    | 4          |

**Internal Assessment: 40** 

End Term Exam: 60

### **Duration of Exam; 3 Hrs**

# **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

# **Learning Objectives:**

1. To acquire knowledge about the various elements of instrumentation systems.

- **2.** To acquire knowledge about working of data acquisition and corresponding signal conditioning.
- 3. To know about different types of display devices and recorders.

| Sr. No   | Contents                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| UNIT-I   | <b>Introduction:</b> Measurement of electrical quantities, Active and reactive power in power plants, Energy meters, Instrument transformers and their transient response.                                                                                                                                                                                                                           |  |  |
| UNIT-II  | <b>Instrumentation Techniques:</b> Telemetry, Remote Control, remote signaling and supervisory control and data acquisition (SCADA), signal formation, conversion and transmission                                                                                                                                                                                                                   |  |  |
| UNIT-III | <ul> <li>Signal Transmission Techniques: Analog pulse and digital modulation,<br/>Amplitude modulation(AM) and Frequency modulation (FM), AM and FM<br/>Transmitter and Receiver, Phase Modulation, Pulse modulation, Digital<br/>transmission techniques, error detection and correction.</li> <li>Telemetry: Telemetry errors, DC, pulse and digital telemetry methods and<br/>systems.</li> </ul> |  |  |
| UNIT-IV  | <b>Supervisory Control and Data Acquisition:</b> Function of SCADA system remote terminal unit(RTU) details, Control center details, Communication between control centers, control center and remote terminal unit.                                                                                                                                                                                 |  |  |
| UNIT-V   | Power Plant Instrumentation: Hydroelectric power plant instrumentation,                                                                                                                                                                                                                                                                                                                              |  |  |

| Thermal power plant instrumentation, Nuclear Power plant Instrumentation. |
|---------------------------------------------------------------------------|
| Applications of SCADA system to Indian Power Systems                      |

| CO1                                                                                | BELE-3612.1 | Know various types of transducers, signal conditioning and data acquisition systems. |  |
|------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|--|
| CO2                                                                                | BELE-3612.2 | Familiar with digital measurement systems, display devices and recorders.            |  |
| CO3                                                                                | BELE-3612.3 | Understand the concept of data transmission and telemetry.                           |  |
| CO4 BELE-3612.4 Understand about measurement of different parameters in power plan |             |                                                                                      |  |

# **RECOMMENDED BOOKS:**

**1.** Cegrell,T., Power System Control Technology, Prentice-Hall of India Private Limited(2001).`

- 2. Lindsley, D.M., Power Plant Control and Instrumentation, IEEE Press (2000).
- **3.** Jarvis, E.W., Modern Power Station Practice: Control and Instrumentation (Vol. F), British Electricity International (1980).

#### SUBJECT TITLE: INSTRUMENTATION IN POWER SYSTEM SUBJECT CODE: BELE-3613 SEMESTER: 6 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T) Pr

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal assessment:40 End Term exam: 60 Duration of exam : 3 Hrs.

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

### **Course Objectives:**

- **1.** To review the power electronics fundamentals.
- 2. To review power transmission fundamentals and to introduce the FACTS concept.
- 3. To introduce to the need of shunt and series compensation and UPFC.

| Sr. No   | Contents                                                                        |  |  |
|----------|---------------------------------------------------------------------------------|--|--|
| UNIT-I   | Power Electronics Fundamentals: Basic function of power electronics,            |  |  |
|          | Powersemiconductor device for high power converters, Static power convertor     |  |  |
|          | structures, AC controller based structure, DC link convertor topologies,        |  |  |
|          | Convertor output and harmonic control.                                          |  |  |
| UNIT-II  | Power Transmission Control: Fundamental of ac power transmission,               |  |  |
|          | Transmissionproblems and needs, the emergence of FACTS, FACTS control           |  |  |
|          | considerations, FACTS controllers                                               |  |  |
| UNIT-III | Shunt and Series Compensation: Shunt SVC principles, Configuration and          |  |  |
|          | control,STATCOM, Configuration applications. Fundamental of series              |  |  |
|          | compensation using GCSC, TCSC and TSSC, Application of TCSC for different       |  |  |
|          | problems of power system, TCSC lay out, SSSC principle of operation             |  |  |
| UNIT-IV  | Unified Power Flow Controllers: Basic operating principles and                  |  |  |
|          | characteristics, independent active and reactive power flow control, control of |  |  |
|          | UPFC, installation, applications, UPFC model for power flow studies, comparison |  |  |
|          | of UPFC with the controlled series compensators and phase shifters.             |  |  |

| CO1 | BELE-3613.1                                                               | Understand the working of various FACTS devices.                |  |  |
|-----|---------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| CO2 | <b>BELE-3613.2</b> Learn to choose the controllers for various scenarios. |                                                                 |  |  |
| CO3 | BELE-3613.3                                                               | Examine various FACT devices under various stability conditions |  |  |
| CO4 | BELE-3613.4                                                               | Select an appropriate FACTS device for a particular application |  |  |

#### **Recommended Books**

- A. Ghosh and G. Ledwich, 'Power Quality Enhancement Using Custom Power Devices', <u>Kluwer Academic Publishers</u>, 2005.
- 2. N.G. Hingorani and L. Gyragyi, 'Understanding FACTS: Concepts and Technology of Flexible AC Transmission System', <u>Standard Publishers and Distributors</u>, 2005.
- 3. Y.H. Sang and A.T. John, 'Flexible AC Transmission Systems', IEEE Press, 2006.
- R.M. Mathur and R.K. Verma, 'Thyristor Based FACTS Controllers for Electrical Transmission Systems', <u>IEEE Press</u>, 2002.T.J.E. Miller, 'Reactive Power Control in Electric Systems', <u>John Wiley</u>, 1982

# SUBJECT TITLE: ELECTRICAL POWER SYSTEMSUBJECT CODE: BELE-3671SEMESTER: 6CONTACT HOURS/WEEK:Lecture (L) Tuto0

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

#### **Internal Assessment: 50**

End Term Exam: 50

# LIST OF EXPERIMENTS

| Sr. No | Contents                                                                                    |
|--------|---------------------------------------------------------------------------------------------|
| EXP-1  | To study the performance of a transmission line. Also compute its ABCD parameters           |
| EXP-2  | Study of Characteristics of over current and earth fault protection.                        |
| EXP-3  | To study the operating characteristics of fuse. (HRC or open type)                          |
| EXP-4  | To find the earth resistance using three spikes                                             |
| EXP-5  | To study the radial feeder performance when<br>(a) Fed at one end.<br>(b). Fed at both ends |
| EXP-6  | To study the performance of under voltage and over voltage relay.                           |
| EXP-7  | To study the characteristics of bimetal mini circuit breakers.                              |
| EXP-8  | To study over current static relay.                                                         |
| EXP-9  | To find the breakdown strength of transformer oil.                                          |

Course Outcomes: On successful completion of this course, the learner will be able to

| CO1 | BELE-3671.1 | Analyze the performance of a transmission line. |
|-----|-------------|-------------------------------------------------|
| CO2 | BELE-3671.2 | Analyze the performance of relays.              |
| CO3 | BELE-3671.3 | Analyze breakdown strength of transformer oil.  |
| CO4 | BELE-3671.4 | Analyze operating characteristics of fuse.      |

# SUBJECT TITLE: MICROCONTROLLER AND PLC LABSUBJECT CODE: BELE-3672SEMESTER: 6CONTACT HOURS/WEEK:Lecture (L)00

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

**Internal Assessment: 50** 

End Term Exam: 50

# LIST OF EXPERIMENTS

| Sr. No | Contents                                                                                                                                                                                      |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EXP-1  | Study of 8051/8031 Micro-controller kits.                                                                                                                                                     |  |
| EXP-2  | Write a program to add two numbers lying at two memory locations and display the result.                                                                                                      |  |
| EXP-3  | Write a program for multiplication of two numbers lying at memory location and display the result. 4. Write a program to check a number for being ODD or EVEN and show the result on display. |  |
| EXP-4  | Write a program to split a byte in two nibbles and show the two nibbles on display.                                                                                                           |  |
| EXP-5  | Write a program to arrange TEN numbers stored in memory location in ascending and descending order.                                                                                           |  |
| EXP-6  | Write a program to find a factorial of a given number.                                                                                                                                        |  |
| EXP-7  | Study of interrupt structure of 8051/8031 micro-controllers.                                                                                                                                  |  |
| EXP-8  | Write a program to show the use of INT0 and INT1.                                                                                                                                             |  |
| EXP-9  | Write a program of flashing LED connected to port 1 of the micro-controller.                                                                                                                  |  |
| EXP-10 | Write a program to control a stepper motor in direction, speed and number of steps.                                                                                                           |  |
| EXP-11 | Write a program to control the speed of DC motor. 13. Implementation of different gates using PLC.                                                                                            |  |
| EXP-12 | Implementation of DOL and star delta starter using PLC.                                                                                                                                       |  |

| EXP-13 | Implement basic logic operations, motor start and stop operation using (i) Timers (ii) Counters |
|--------|-------------------------------------------------------------------------------------------------|
| EXP-14 | Motor forward and reverse direction control using PLC.                                          |
| EXP-15 | 1. Make a PLC based system for separating and fetching work pieces.                             |
|        | 2. Make a PLC based control system for conveyor belt.                                           |
| EXP-16 | Implement a PLC based traffic light control.                                                    |

| CO1 | BELE-3672.1 | Identifying and defining the automation control requirements, and specifying tasks to be performed. |  |
|-----|-------------|-----------------------------------------------------------------------------------------------------|--|
| CO2 | BELE-3672.2 | Choose the proper actuators and control hardware (Microcontroller, PLC, or PAC)                     |  |
| CO3 | BELE-3672.3 | Setting up and testing of actuators and control hardware .                                          |  |
| CO4 | BELE-3672.4 | Documenting and presenting an appropriate solution.                                                 |  |

Note: At least ten experiments should be performed in semester.

#### SUBJECT TITLE: POWER SYSTEM ANALYSIS SUBJECT CODE: BELE-4701 SEMESTER: 7 CONTACT HOURS/WEEK: Lecture (L)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1`           | 0             | 4          |

Internal assessment:40 End Term exam: 60 Duration of exam : 3 Hrs.

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### Learning Objectives:

- **1.** To understand the importance of per unit system, single line diagram and impedance diagrams of electric networks in power system analysis.
- 2. To gain the information about various types of buses in the electric network and the type of data required for power flow studies.
- **3.** To understand the different types of faults in the system and methods to analyze these faults.

| Sr. No  | Contents                                                                                                                                                                                                                                                                |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-I  | <b>SYSTEM MODELLING:</b> System modelling of synchronous machines, transformers, loads etc, per unit system, single line diagram of electrical networks, single phase impedance diagrams. Formulation of impedance and admittance matrices for the electrical networks. |
| UNIT-II | LOAD FLOW STUDIES: Data for the load flow studies, Swing Bus, Formulation                                                                                                                                                                                               |

|          | of simultaneous equations, Iterative solutions by the Gauss-Seidal method and Newton-Raphson Method.                                                                                                                                                                                                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-III | <b>FAULT ANALYSIS:</b> Transients on transmission line, short circuit of synchronous machine, selection of circuit breakers, Algorithm for short circuit studies, Symmetrical Component transformation, and construction of sequence networks of power systems. Symmetrical Analysis of Unsymmetrical Line-to-ground (LG), Line-to line (LL), double line to ground (LLG) faults using symmetrical components |
| UNIT-IV  | <b>POWER SYSTEM STABILITY</b> : Steady state stability, Dynamics of a synchronous machine, Power angle equations, Transient stability, equal area criterion, Numerical solution of swing equation, factors effecting transient stability.                                                                                                                                                                     |

| CO1 | BELE-4701.1 | Develop per unit system models of synchronous machines, transformers, |  |  |
|-----|-------------|-----------------------------------------------------------------------|--|--|
|     |             | transmission lines and static loads for power system studies.         |  |  |
| CO2 | BELE-4701.2 | Touse bus admittance matrix to do load flow analysis and to do fault  |  |  |
|     |             | analysis by bus impedance matrix.                                     |  |  |
| CO3 | BELE-4701.3 | Compare features of Gauss-Siedel, Newton-Raphson and Fast decoupled   |  |  |
|     |             | methods of load flow analysis.                                        |  |  |
| CO4 | BELE-4701.4 | Examine the impact of various faults on power system.                 |  |  |
|     |             |                                                                       |  |  |

# **BOOKS RECOMMENDED**

- 1. Elgerd O.I., Electric Energy Systems Theory, Tata McGrawHill
- 2. Nagrath I.J., Kolthari D.P., Modern Power System Analysis, Tata McGrawHill
- 3. StevensonW.D., Elements of Power System Analysis, McGraw Hill
- 4. Nagrath I.J. and Kothari D.P., Power System Engineering, Tata McGrawHill

# SUBJECT TITLE: NON-LINEAR AND DIGITAL CONTROL SYSTEMS SUBJECT CODE: BELE-4702 SEMESTER: 7 CONTACT HOURS/WEEK: Lecture (L) Tutorial (T)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal assessment:40 End Term exam: 60 Duration of exam : 3 Hrs.

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### Learning Objectives:

- **1.** To make the students aware about digital control system, sampling process and Z-transform.
- 2. To introduce the students to state variable analysis and design of digital control systems.
- **3.** To make them familiar with nonlinear control systems and to understand their stability criterion

| Sr. No | Contents                                                                                                                                                            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-I | <b>STATE VARIABLE TECHNIQUES:</b> State variable representation of systems by various methods, solution of state variable model. Controllability and observability. |

| UNIT-II  | <b>PHASE PLANE ANALYSIS:</b> Singular points, Method of isoclines, delta method, phase portrait of second order nonlinear systems, limit cycle.                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| UNIT-III | <b>DESCRIBING FUNCTION ANALYSIS:</b> Definition, limitations, use of describing function for stability analysis, describing function of ideal relay, relay                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|          | with hysteresis, dead zone, saturation, coulomb friction and backlash.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| UNIT-IV  | <b>LYAPUNOV'S STABILITY METHOD:</b> Lyapunov's direct method, generation of Lyapunov'sfunction by Krasovskii's and Variable Gradient methods                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| UNIT-V   | <b>SAMPLED DATA SYSTEMS:</b> Sampling process, mathematical analysis of sampling process, application of Laplace transform. Reconstruction of sampled signal, zero order, first order hold. Z-transform definition, evaluation of Z-transform, inverse Z-transform, pulse transfer function, limitations of Z-transform, State variable formulation of discrete time systems, solution of discrete time state equations. Stability definition, Jury's test of stability, extension of Routh-Hurwitz criterion to discrete time systems. |  |  |  |

| CO1 | BELE-4702.1 | examine discrete time systems                                     |
|-----|-------------|-------------------------------------------------------------------|
| CO2 | BELE-4702.2 | Design and evaluate digital controllers.                          |
| CO3 | BELE-4702.3 | Understand Non Linear control systems and analyze their stability |
| CO4 | BELE-4702.4 | Implement observers and estimators for nonlinear systems.         |

# **BOOKS RECOMMENDED:**

- 1. Ogata K., Modern control engineering. Prentice Hall (India)
- 2. Nagrath I.J., Gopal M., Control system engineering, New Age Publications
- 3. Hsu J.C. and Meyer A.U., Modern control principles and application
- 4. Gopal M., Digital Control and State Variable Methods, Tata McGraw Hill
- 5. Kuo B.C. and Golnaraghi F., Automatic Control System, Wiley Publications
- 6. Dorf R.V. and Bishop R.H., Modern Control Systems, Adison Wesley

# SUBJECT TITLE: NON CONVENTIONAL ENERGY RESOURCESSUBJECT CODE: BELE-4704SEMESTER: 7CONTACT HOURS/WEEK:Lecture (L)Tutorial (T)Practing

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal assessment:40 End Term exam: 60 Duration of exam : 3 Hrs.

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Learning Objectives:**

- **1.** To obtain knowledge about renewable energy sources and solar energy and their utilization.
- 2. To introduce to wind energy conversion and bio-mass energy conversion systems.
- **3.** To introduce to geothermal energy and energy from ocean. To make them aware about hydrogen energy sources.

| Sr. No | Contents                                                                        |
|--------|---------------------------------------------------------------------------------|
| UNIT-I | <b>INTRODUCTION:</b> Limitation of conventional energy sources, need and growth |

|          | of alternative energy source, basic scheme and application of direct energy conservation.                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-II  | MHD GENERATORS: Basic principles, gaseous, conduction and hall effect, generator and motor effect, different types of Magneto-Hydro-Dynamic (MHD) generator, types of MHD material, conversion effectiveness, analysis of constant area MHD generator, practical MHD generator, application and economic aspects.          |
| UNIT-III | <b>THERMO-ELECTRIC GENERATORS:</b> Thermoelectric effects, Seeback effect, Peltier effect, Thomson effect, thermoelectric converters, figures of merit, properties of thermoelectric material, brief description of the construction of thermoelectric generators, application and economic aspect.                        |
| UNIT-IV  | <b>PHOTOVOLTAIC EFFECT AND SOLAR ENERGY:</b> Photovoltaic effect, different types of photovoltaic cells, cell fabrication, characteristics of photovoltaic cells, conversion efficiency, solar batteries, application, solar radiation analysis, solar energy in India, solar collectors, solar furnaces and applications. |
| UNIT-V   | <b>FUEL CELLS:</b> Principle of action, Gibb's free energy, general description of fuel cells, types, construction, operational characteristics and application.                                                                                                                                                           |
| UNIT-VI  | <b>MISCELLANEOUS SOURCES:</b> Geothermal system, hydro-electric plants, wind power, tidal energy, Bio-mass energy                                                                                                                                                                                                          |

| CO1 | BELE-4703.1 | Understand the need of conversion of various energy sources |
|-----|-------------|-------------------------------------------------------------|
| CO2 | BELE-4703.2 | Examine fuel cell and magneto hydrodynamics technologies    |
| CO3 | BELE-4703.3 | Understand harnessing of biomass energy and wind energy.    |
| CO4 | BELE-4703.4 | Analyze harnessing of Geothermal and Ocean energies         |

# **BOOKS RECOMMENDED:**

- 1. Gupta B. R., Generation of Electrical Energy, S. Chand.
- 2. Rai, G.D., Non Conventional Energy Sources, Khanna Publishers.

- **3.** Rao, S. and Parulekar, B.B., Energy Technology: Non Conventional, Renewable and Conventional, Khanna Publishers.
- **4.** Wadhwa, C.L., Generation, Distribution and Utilization of Electric Energy, New Age International(P) Limited, Publishers.

### SUBJECT TITLE: POWER SYSTEM ANALYSIS LAB SUBJECT CODE: BELE-4771 SEMESTER: 7 CONTACT HOURS/WEEK: Lecture (L) Tutori

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 2             | 1          |

Internal Assessment: 60 End Term Exam: 40

| Sr. No. | Contents                                                                                                                                              |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXP-1   | Design of transmission systems for given power and distance.                                                                                          |
| EXP-2   | Short circuit calculations and calculations of circuit breaker ratings for a power system network.                                                    |
| EXP-3   | Design of substations                                                                                                                                 |
| EXP-4   | Design of distribution systems                                                                                                                        |
| EXP-5   | Y-bus formation                                                                                                                                       |
| EXP-6   | Z-bus formulation                                                                                                                                     |
| EXP-7   | Load flow analysis by Gauss-Seidal method                                                                                                             |
| EXP-8   | Load flow analysis by Newton-Raphson method                                                                                                           |
| EXP-9   | Fault analysis for line-to-line (L-L), Line-to-Ground (L-G)etc                                                                                        |
| EXP-10  | Design of underground cabling system for substation.                                                                                                  |
| EXP-11  | To obtain power system stability on High Voltage Alternating current (HVAC) system with the help of Flexible Alternating Current Transmission Systems |

# LIST OF EXPERIMENT

|        | (FACTS)devices.                                                                                 |
|--------|-------------------------------------------------------------------------------------------------|
| EXP-12 | Optimal Capacitor placement on a system having variable reactive power and low voltage profile. |
| EXP-13 | To obtain relay co-ordination on a power system.                                                |
| EXP-14 | To obtain optimal generator pricing on hydro-thermal and renewable energy systems.              |
| EXP-15 | To find synchronous reactance (Transient, sub-transient) during fault analysis.                 |

| CO1 | BELE-4771.1 | Modeling of power system.                                                  |
|-----|-------------|----------------------------------------------------------------------------|
| CO2 | BELE-4771.2 | Effectively employ different techniques to analyze different power system. |
| CO3 | BELE-4771.3 | Design of distribution systems, substations.                               |
| CO4 | BELE-4771.4 | To obtain relay co-ordination on a power system.                           |

**Note:** At least TEN experiments are to be performed in a semester. List of experiments is given below:

#### SUBJECT TITLE: POWER SYSTEM OPERATION AND CONTROL

#### **SUBJECT CODE: BELE -4711**

SEMESTER: 7 CONTACT HOURS/WEEK:

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 0            | 0             | 4          |

# Internal assessment:40 End Term exam: 60 Duration of exam : 3 Hrs.

#### **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

#### **Learning Objectives:**

- **1.** To make students express Economic operation of power system and importance of LFC control.
- 2. To allow students discuss about thermal and hydro power plants operation in meeting the load demand optimally and expressing importance of reactive power control.
- **3.** Ability to discuss single area load frequency control and two area load frequency control along with express variation of frequency in the power system with varying load.
- 4. Ability to model and design turbine and Automatic controller.

| Sr. No   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Introduction to Power Generation Units: Characteristics and its variations,                                                                                                                                                                                                                                                                                                                                                                                              |
| UNIT-I   | <b>Economic Operation of Power Systems:</b> Fuel consumption, Characteristics of the must write the second state and the incomposition of maximum and maximum.                                                                                                                                                                                                                                                                                                           |
|          | thermal unit, Incremental fuel rate and their approximation, minimum and maximum power generation limits.                                                                                                                                                                                                                                                                                                                                                                |
|          | <b>Economic Dispatch:</b> Economic dispatch problem with and without transmission line                                                                                                                                                                                                                                                                                                                                                                                   |
| UNIT-II  | losses, Unit Commitment and solution methods. Hydrothermal scheduling: fixed-<br>head and variable head, Short- term and Long-term,                                                                                                                                                                                                                                                                                                                                      |
| UNIT-III | <b>Power System Control:</b> Power system control factors, interconnected operation, tie-line operations, Reactive power requirements, during peak and off peak hours, Elementary ideas of load frequency and voltage, reactive power control; block diagrams of P-f and Q-V controllers, ALFC control, Static and Dynamic performance characteristics of automatic load frequency control (ALFC) and automatic voltage regulator (AVR) controllers, Excitation systems. |
| UNIT-IV  | <b>Power System Security:</b> Factors affecting security, Contingency analysis, Network sensitivity, correcting the generation dispatch by using sensitivity method and linear programming.                                                                                                                                                                                                                                                                              |
| UNIT-VI  | <b>Power flow analysis in AC/DC systems</b> : General, modelling of DC links, solution of DC load flow, discussion, per unit system for DC quantities, solution techniques of AC-DC power flow equations                                                                                                                                                                                                                                                                 |

| CO1 | BELE-4711.1 | Understand operation of generators in various power plants                          |  |
|-----|-------------|-------------------------------------------------------------------------------------|--|
| CO2 | BELE-4711.2 | Students will able to design the mathematical model of the speed governing          |  |
|     |             | systems, turbines and excitation systems.                                           |  |
| CO3 | BELE-4711.3 | Students will able to discuss about load frequency control.                         |  |
| CO4 | BELE-4711.4 | Students will able to understand different types of loads and their characteristics |  |

# **BOOKS RECOMMENDED:**

- 1. Nagrath, I.J. and Kothari, D.P., Power System Engineering, TataMcGrawHill.
- 2. Stevenson W.D. and Grainger J.J., Power System Analysis, McGraw Hill.
- 3. Arrillaga J. and Smith Bruce, AC-DC Power System Analysis, IEEPress
- 4. Elgerd, O.I., Electric Energy Systems Theory: An Introduction. 2nd Ed., Tata

McGraw Hill.

- 5. Dhillon J.S., Kothari D.P., Power System Optimisation, 2nd Ed., Prentice Hall India.
- 6. Kundur P, "Power System Stability and Control", Third Reprint, tat McGraw Hill.
- 7. Kennedy, B., Power Quality Primer, McGraw Hill.
- 8. Bollen, M.H.J., Power Quality Problems: Voltage Sag and Interruptions, IEEE Press.
- 9. Mohan, N., Power Electronics, New Age International (P) Limited, Publishers.

#### SUBJECT TITLE: HIGH VOLTAGE ENGINEERING SUBJECT CODE: BELE-4713 SEMESTER:7 CONTACT HOURS/WEEK: Lecture (L) Tutor

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 3            | 0             | 3          |

Internal assessment:40 End Term exam: 60 Duration of exam : 3 Hrs.

# **Objective and outcome of course:**

# **Instructions for Question Paper**

The question paper consist of three sections A, B & C. Section-A is compulsory consisting of 10 short answer type questions of 2 marks each from the whole syllabus. Section-B consists of 6 questions covering whole syllabus. Students will attempt any four questions. Each question carries 5 marks. Section-C consists of 3 questions from the whole syllabus. Students will attempt any two questions. Each question carries 10 Marks

# Learning Objectives:

- **1.** To know about how power systems are subjected to over voltages and what are protection methods adopted against these over voltages.
- **2.** To understand the basic physical phenomenon related to various breakdown processes in solid, liquid and gaseous insulating materials at high voltages.
- 3. To know about generation and measurement of D. C., A.C., & Impulse voltages.
- **4.** To know about various tests on H. V. equipment and on insulating materials, as per the standards.

| Sr. No | Contents |
|--------|----------|
|        |          |

| UNIT-I   | <b>Extra High Voltage (EHV) Transmission and Corona Loss:</b> Need for EHV Transmission. Use of bundled conductors, corona characteristics of smooth bundled conductors with different configurations, Corona loss. Factors affecting the corona loss. Radio interference due to corona. Shunt and series compensation in EHV lines. Tuned power lines. InsulationCo-ordination.                                                                                                                                                                                |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| UNIT-II  | <b>High Voltage Direct Current (HVDC) Transmission:</b> Advantages, disadvantages and economics of HVDC Transmission system.Types of Direct Current (DC) links, converter station equipment, their characteristics.                                                                                                                                                                                                                                                                                                                                             |  |  |
| UNIT-III | <ul> <li>Insulating materials for High Voltage Applications of insulating materials used in power transformers rotating machines, circuit breakers, cables, power capacitors. Conduction and breakdown in Gases, Liquids and Solid Dielectrics:</li> <li>Solids-Intrinsic, electromechanical and thermal breakdown composite dielectrics, solid dielectrics used in practice.</li> <li>Liquids-Conduction and breakdown in pure and commercial liquids, suspended particle theory, cavitation and bubble theory, stressed oil volume theory, Liquids</li> </ul> |  |  |
|          | <ul> <li>used in practice.</li> <li>Gases-Ionization process, Townsend's current growth equations, Ist and 2nd ionization coefficients. Townsend's criterion for breakdown. Streamer theory of breakdown, Pashen's law of Gases. Gases used in practice.</li> </ul>                                                                                                                                                                                                                                                                                             |  |  |
| UNIT-IV  | Generation of High Voltages: High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC), Power frequency and High frequency: Impulse voltage and impulse current Generation, Tripping and contact of Impulse Generator. Measurement of voltage and current: High voltage direct current, Alternating current and Impulse voltage and currents.                                                                                                                                                                                                 |  |  |

| CO1 | BELE-4713.1 | Various principles of HV generation and its measurements                                                                             |  |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| CO2 | BELE-4713.2 | Examine lightning phenomena and high voltage insulation environment pollution.                                                       |  |
| CO3 | BELE-4713.3 | Understand the basic physical phenomenon occurring in various breakdown processes in solid, liquid and gaseous insulating materials. |  |
| CO4 | BELE-4713.4 | Know about generation and measurement of D. C., A.C., & Impulse voltages.                                                            |  |

# **BOOKS RECOMMENDED:**

**1.** Bagamudre, Rakesh Das Extra High Voltage A.C. Transmission Engineering, New Age International Publishers.

- 2. Kimbark E.W., High Voltage Direct Current Transmission, Wiley-Interscience
- **3.** Kamaraju V. and Naidu M.S., High Voltage Engineering, Tata McGraw-Hill Education
- **4.** Jha R.S., High Voltage Engineering, DhanpatRai.