SCHEME & SYLLABUS

(Choice Based Credit System)

for

M. TECH.

in

COMPUTER SCIENCE and ENGINEERING

(w.e.f. Session 2017-18)

Program Code: CSE 401

DEPARTMENT OF COMPUTER SCIENCE and ENGINEERING SCHOOL OF ENGINEERING

RIMT UNIVERSITY, MANDIGOBINDGARH, PUNJAB

TABLE OF CONTENTS

S.	Content	Page No.
No.		
	Section 1: Vision and Mission of the University	2
1.		
	Section 2: Vision and Mission of the Department	3
2.		
	Section 3: About the Program	4
3.		
	Section 4: Program Educational Objectives (PEOs), Program Outcomes	5-7
4.	(POs) and Program Specific Outcomes (PSOs)	3-7
	Section 5: Curriculum / Scheme with Examination Scheme/ Course	8-22
5.	category-wise credit distribution	0 22
		22.124
6.	Section 6: Detailed Syllabus with Course Outcomes	23-124

SECTION 1

Vision & Mission of the University

VISION

• To contribute to the society through excellence in knowledge-based education utilizing the potential of computer science and engineering with a deep passion for wisdom, culture and values.

MISSION

- 1. To provide quality education to meet the need of profession and society.
- 2. Provide a learning ambience to enhance innovations, problem solving skills, leadership qualities, teamspirit and ethical responsibilities.
- 3. Provide exposure of latest tools and technologies in the area of computer science and engineering

SECTION 2

Vision and Mission of the Department

VISION

- To contribute to the society through excellence in scientific and technical education and research.
- To contribute the country by providing globally competent Computer Engineers capable of working in an inter-disciplinary environment which foster spirits of innovation, entrepreneurship and leadership.
- To support industry for growth, being the valuable resource for them, and remain a role model for others in the field of Computer Engineering.

MISSION

- To provide a high-quality educational experience for undergraduate and graduate students that enables them to become leaders in their chosen professions and to make them globally competitive Computer engineers.
- To create, explore, and develop innovations in engineering and science through undergraduate and graduate research.
- To develop linkages with world class R&D organizations and educational institutions in India and abroad for excellence in teaching, research and consultancy practices.

SECTION 4

Programme Educational Objectives, Programme Specific Outcomes and Programme Outcomes

The PEOs are broad statements that describe the career and professional accomplishments that the program is preparing its graduates to achieve in four years subsequent to receiving the degree. The PEOs of the 'M.Tech (CSE)' program are as follows

PEO1: To provide a solid foundation in various streams of Computer Science & Engineering

PEO2: Enrich the learners to exhibit research skills and knowledge to further their career.

PEO3: Exhibit Professionalism, ethical approach, communication skills, team work on multidisciplinary projects and adapt to modern trends by engaging in lifelong learning.

PEO4: Develop experimental setup for modelling of engineering problems.

Programme Specific Objectives (PSOs) are **specific statements** that describe the professional career accomplishments that the program is designed for. The PSO's of the 'M.Tech. (CSE)' are as follows:

PSO1: Design software systems, components, or processes to meet identified needs within economic, environmental and social constraints & make them employable in product-oriented Industry.

PSO2: Ability to apply mathematical foundations and algorithmic principles for modeling and simulation of engineering problems.

PSO3: Use research based knowledge and tools for the analysis and interpretation of data to synthesize information for obtaining valid conclusions.

Programme Outcomes (POs) are **attributes of the post-graduates** of the programme that are indicative of the graduates' ability and competence to work as a business professional upon post-graduation. Program Outcomes are statements that describe what students are expected to know or be able to do by the time of graduation. They must relate to knowledge and skills that the students acquire from the programme. The achievement of all outcomes indicates that the student is well prepared to achieve the program educational objectives down the road. POs designed for 'M.Tech. (CSE)' are as follows:

PO1 Ability to apply knowledge of mathematics, science and engineering fundamentals to the solution of complex engineering problems.

PO2 Able to identify, formulate and analyse complex engineering problems to obtain valid conclusions using principles of mathematics, engineering sciences & programming skills.

PO3 Ability to design solutions of complex engineering problems as well as can design system processes that meet the specified needs with the appropriate consideration for societal and environmental considerations.

PO4 Able to use research-based knowledge and research methods including design, analysis and interpretation of data to provide valid conclusions.

PO5 Able to use modern IT tools to complex engineering activities with an understanding of the limitations.

PO6 Understanding of the social, cultural, global and environmental responsibilities of a professional engineer.

PO7 Understanding of impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PO8 Understanding of professional and ethical responsibilities and commitment to them.

SECTION 5

Curriculum / Scheme with Examination Grading Scheme

INDUCTION PROGRAM

Induction 1	nduction Program (Mandatory)							
Duration	03 weeks							
Frequency	Induction program for students to be offered right at the start of the first year							
Activities	 Physical Activity Sports, Yoga & Stress Management Creative Arts Universal Human Values Lectures by Eminent People Visits to local Areas Familiarization to Dept./Branch & Innovations 							

SEMESTER WISE SUMMARY OF THE PROGRAMME: M.TECH. (COMPUTER SCIENCE AND ENGINEERING)

S. No.	Semester	No. of Contact Hours	Marks	Credits
1.	I	16	500	16
2.	II	20	500	18
3	III	21	500	26
4	IV	0	100	20
	Total	57	1600	80

COURSE CATEGORY-WISE CREDIT DISTRIBUTION

S.N.	CATEGORY	NUMBER OF CREDITS	PERCENTAGE WEIGHTAGE
1	University Core	6	7.5 %
2	University Open	NIL	NIL
3	Program Core	22	27.5 %
4	Program Elective	12	15 %
5	Program Specialization	NA	NIL
6	MOOCs	6	7.5 %
7	Project / Research Projects	14	17.5%
8	Thesis/Dissertation	20	25 %
9	Training/Internships/Field Trips	NA	NIL
10	Professional Skills	NA	NIL
11	Any Other (Fundamental Courses & Basic Sciences)	NIL	NIL
	TOTAL CREDITS	80	100 %

EXAMINATION GRADING SCHEME

Marks Percentage Range	Grade	Grade Point	Qualitative Meaning
80-100	О	10	Outstanding
70-79	A+	9	Excellent
60-69	A	8	Very Good
55-59	В	7	Good
50-54	В	6	Above Average
45-49	С	5	Average
40-44	P	4	Fail
0-39	F	0	Fail
ABSENT	AB	0	Fail

Percentage Calculation: CGPA *10

Program Code	:	M. Tech. Regular (Computer Science & Engineering)
Department	:	Department of Computer science & Engineering
Sem	:	1 st

	Teaching Scheme						Contact Hours/Week			Relative Weights (%)				
S. No	Subject Code	Course Title	Subject Area	Credits	L	Т	P	Theory	Practical	\mathbf{CWA}	LWA	MTE	ETE	Total
	1		1	1				1			1	1	1	
1	MTCS-101	Operation research and Methodology	Computer Science	4	3	1	-	3	-	16	-	24	60	100
2	MTCS-102	Advance Computer Networks	Computer Science	4	3	1	-	3	-	16	-	24	60	100
3	MTCS-103	Advance Database System	Computer Science	4	3	1	-	3	-	16	-	24	60	100
4	MTCS-104	Lab-I (Advance Database System)	Computer Science	2	-	-	4	0	2	-	100	-	-	100
5	MTCS-181	Seminar	Computer Science	2	-	-	-	2	-	-	100			100
		Total		16	9	3	4	11	2	48	200	72	180	500

1. CWA: Class Work Assessment

2. LWA: Lab Work Assessment

3. MTE: Mid Term Examination

4. ETE: End Term Examination

Program Code	:	M. Tech. Regular (Computer Science & Engineering)
Department	:	Department of Computer science & Engineering
Sem	:	2 nd

	Teaching Scheme					Contac ours/W		Exam Duration (Hrs)		Relative Weights (%)				
S. No	Subject Code	Course Title	Subjec t Area	Credit s	L	Т	P	Theory	Practic al	CWA	LWA	MTE	ETE	Total
1	MTCS-105	Advance Software Engineering	Computer Science	4	3	1		3	-	16	-	24	60	100
2	MTCS-106	Digital Image Processing	Computer Science	4	3	1		3	-	16	-	24	60	100
	Department E	Clective – I	I.			1	1	1	I I					
	MTCS-140	Information Security	Computer Science											
3	MTCS-141	Distributed System	Computer Science	4	3	1		3	-	16	-	24	60	100
	MTCS-142	Cryptography & Network Security	Computer Science											
	Department E	Clective – II												
	MTCS-143	Web Mining	Computer Science											
4	MTCS-144	Data Ware Housing & Data Mining	Computer Science	4	3	1		3	-	16	-	24	60	100
	MTCS-145	Information Retrieval	Computer Science											
5.	MTCS-107	Advance Software Engineering (Lab)	Computer Science	2	-	-	4	0	2	-	100			100
		Total		18	12	4	4	12	2	64	100	96	240	500

Program Code	:	M. Tech. Regular (Computer Science & Engineering)
Department	:	Department of Computer science & Engineering
Sem	:	3 rd

		Contact Hours/Week			Exam Duration (Hrs.)		Relative Weights (%)							
S. No	Subject Code	Course Title	Subject Area	Credits	L	T	P	Theory	Practical	CWA	LWA	MTE	ETE	Total
1	MTCS-108	Soft Computing	Computer Science	4	3	1		3	-	16	-	24	60	100
	Department E MTCS-146	Elective – III Software Testing and Validation	Computer Science											
2	MTCS-147	Software Engineering Concepts and Methodology	Computer Science	4	3	1		3	-	16	-	24	60	100
	MTCS-148	Business Intelligence and Applications	Computer Science											
	Open Elective			1	1				1			1	1	1
3	MTCS-149 MTCS-150	Big Data Natural Language Processing		4	3	1		3	-	16	-	24	60	100
	MTCS-151	Cloud Computing												
4	MTCS-182	Pre-Thesis Seminar		4	-	-	-	0	-	-	100	-	-	
5	MTCS-183	Project		10	-	-	-	0	-	-	60	-	40	
		Total		26	9	3		9		48	160	72	220	

Program Code	:	M. Tech. Regular (Computer Science & Engineering)
Department	:	Department of Computer science & Engineering
Sem	:	4 th

		Teaching Scheme				Contac ours/We		Dur	cam ration Irs.)		Relati	ve Wei	ghts (%	b)
S. No	Subject Code	Course Title	Subject Area	Credits	L	Т	P	Theory	Practical	CWA	LWA	MTE	ETE	Total
1	MTCS-190	DISSERTATION	Computer Science	20									100	100
		Total		20			•							100

1. CWA: Class Work Assessment

2. LWA: Lab Work Assessment

3. MTE: Mid Term Examination

4. ETE: End Term Examination

RIMT UNIVERSITY

NAME OF DEPT.:	Computer Scie	nce and Engin	eering				
1.Subject Code: MTCS-101	Course Title: Operation Research and Methodology						
2. Contact Hours: 32	L: 3	T: 1	P: 0				
3. Examination Duration (Hrs.):	Theory	0 3	Practical 0	0			
4. Relative Weight: CWA	16 LW -	MTE 24	ETE 60	EPE -			
5. Credits: 0 4 6. Se	mester 1		_				

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: After Studying this subject you should be able to: Understand the meaning, purpose, and tools of Operations Research, Describe the history of Operations Research, Describe the Stages of O.R, Explain the Applications of Operations Research.

10.Outcomes:

MTCS-101.1	Formulate research problem
MTCS-101.2	Analyze literature review and find research gaps to finalize research objectives.
MTCS-101.3	Identify the need of ethics in research.
	Identify the need of IPR of research projects for economic growth and social benefits.
	Apply basic data analytics techniques: probability distribution, linear regression, ANOVA

11. Details of the Course:

Sl. No.	Contents	Contact Hours
110.	Unit - I	Hours
1.	Identifying And Defining Research Problem: Locating, Analyzing, stating and evaluating problem, technique in defining a problem. Reviewing Literature: Need, Sources-Primary and Secondary, Purposes/scope of Review, Steps in conducting review.	8
	Unit - II	
2.	Method of Research: Research designs: Research design in case of exploratory research studies, research design in case of descriptive studies, Experimental Research and case study. Procedure for Writing A Research Proposal: Purpose, types and components of research	8
3.	Unit - III	
	Procedure for Writing A Research Report And Research Paper: Audiences and types of research reports, Format of Research report and	8
	journal. Strategies for evaluating research, disseminating and utilizing	
	research- An Overview, Guidelines for writing research paper.	
	Probability Distributions:	
	Discrete probability distribution, Continuous uniform distribution,	
	Normal distribution, Areas under the normal curve, t-distribution, F-	
	distribution, Chi-square distribution.	
	Unit - IV	
	Sample Estimation Problems:	
	Point estimation, Interval estimation, the estimation of mean, the estimation of Variances, Estimation of proportions.	
4.	Hypothesis:	8
	Basic concepts concerning testing of hypothesis, procedure for hypothesis	
	testing, important parametric tests: z-test, t-test, chi-squared test, F-test.	
	Total	32

11. Suggested Books:

Sl.	Name of Books / Authors	Year of
No.		Publication
	Probability and Statistics for Engineers and scientists Walpole, Myers, Myers and Ye, 9th edition Pearson Education	2012
2	C.R. Kothari, Research methodology- methods and techniques, New Age International publisher.	2014

3.	Adrian Wallwork English for writing research papers, Springer	2011
4.	Charles X Ling, Quang Yang, Crafting your research Future, Morgan &	2012
	claypool Publishers,	

Instructions for Question Paper:

The question paper consists of two sections A, & B. Each section contains 4 questions. Students will attempt any five questions from both the sections. At least two questions from each section must be attempted. All questions carry equal marks.

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1. Subject Code: MTCS-102 Course Title: Advance Computer Networks

3. Examination Duration (Hrs.): Theory 0 3 Practical 0 0

4. Relative Weight: CWA 16 A ETE 60 EPE

5. Credits: **0 4** 6. Semester: **1**

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: This course aims to provide advanced background on relevant computer networking topics to have a comprehensive and deep knowledge in computer networks.
- 10. Outcomes:

MTCS-102.1	Understand advanced concepts and next generation networks
MTCS-102.2	Analyze TCP/IP variants, network Algorithm's, Protocols and their functionalities
MTCS-102.3	Compare the available solution and apply the knowledge to fix the issues at various layers related to networking
MTCS-102.4	Evaluate the performance of various network algorithms and protocols for effective and efficient networking.
MTCS-102.5	Develop the network with the knowledge of subnetting, networking, supernetting and addresses.

11. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Unit - I Computer networks and layered architecture, Asynchronous Transfer Mode- ATM layered model, switching and switching fabrics, network layer in ATM, QOS, LAN emulation.	

	Transport Layer-Elements of transport protocols; Internet transport		
	protocols: TCP and UDP, TCP connection management, congestion		
	control.		
	Unit - II		
	Application Layer-Network application architectures: Client-server,		
	P2P and hybrid;		
2.	Application layer protocols: DNS, FTP, TFTP, TELNET, HTTP and	8	
2.	WWW, SMTP and electronic mail; Network management and SNMP.	0	
	Adhoc and Cellular networks- Features, advantages and applications,		
	Adhoc versus Cellular networks, Network architecture,		
	Protocols: MAC protocols, Routing protocols, Technologies.		
	Unit - III		
	Wireless Communication Systems- Evolution, examples of wireless		
	communication systems, 2G Cellular networks, Evolution for 2.5G		
3.	TDMA Standards, IS-95B for 2.5G CDMA.	9	
٥.	Wireless and Mobile Networks-Wireless links and network	9	
	characteristics, wireless local loop (WLL), Local Multipoint Distribution		
	System (LMDS), Wireless local Area Networks (WLANs), Bluetooth		
	and Personal Area Networks.		
	Unit - III		
4.	Introduction to Network Security- Cryptography, symmetric and	7	
4.	public-key algorithms, digital signatures, communication security, and	, 	
	authentication protocols, E-mail security, PGP and PEM.		
	Total	32	

11. Suggested Books:

Sr. No	Name of Books/ Authors	Year of Publication
1	Forouzan, B. A., "Data Communication and Networking", 3rd Ed., Tata McGraw-Hill, 5 th edition	2016
2	Tanenbaum, A. S., "Computer Networks", 4th Ed., Pearson Education	2002
3	Stallings, W., "Network Security and Cryptography", 4th Ed., Prentice-Hall of India, 6th edition	2013
4	Theodore S. Rappaport, Wireless Communication: Principles and Practices (2ndEdition), Pearson Education	2001

<u>Instructions for Question Paper:</u> The question paper consists of two sections A, & B. Each section contains 4 questions. Students will attempt any five questions from both the sections. At least two questions from each section must be attempted. All questions carry equal marks.

RIMT UNIVERSITY

NAME OF DEPT.:	Computer Scie	nce and Engin	eering
1.Subject Code: MTCS-103	Course Title: A	Advanced Data	base System
2. Contact Hours: 32	L: 3	T: 1	P: 0
3. Examination Duration (Hrs.):	Theory	0 3	Practical 0 0
4. Relative Weight: CWA	16 LWA	MTE 24	ETE 60 EPE
5. Credits: 0 4 6. Set 7. Pre-requisite:	mester 1 st		

- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: Introduce basic concepts and major techniques in DBMS implementations. These include concepts and techniques for data storage, query processing, and transaction management.
- 10. Outcomes:

MTCS-103.1	Design and implement Web database systems by satisfying the requirements and constraints
MTCS-103.2	Apply the principles and practice of designing and implementing advanced databases
MTCS-103.3	Analyse the features of embedded database and distributed database
MTCS-103.4	Develop next generation databases such as cloud databases and column store database
MTCS-103.5	Evaluate how to leverage data relationships using graph databases and designing multimedia databases
MTCS-103.6	Identify issues in the performance of database systems and manage database recovery.

11. Details of the Course:

Sl. No.	Contents				
	Unit - I Data Base Analysis and Design Techniques: Review of basic Database Concepts,				
1.	Database Design Methodologies. ER Modeling: Specialization, Generalization, Aggregation, Normalization Theory. Database Implementation using UML: Introduction to UML, Structure diagrams,	8			
	behavioral diagrams, object oriented analysis, class diagram.				
2.	Unit - II Advanced Transaction Processing and Concurrency Control: Transaction Concepts, Concurrency Control: Locking Methods, Time-stamping Methods, Optimistic Methods for Concurrency Control, Concurrency Control in Distributed Systems. Query Compiler: Introduction, parsing, generating logical query plan from parse tree. Query Processing: Physical-Query-plan Operators. Operations: selection, sorting, join, project, set.	8			
	Unit - III				
3.	Query Evaluation: Introduction, Approaches to QE, Transformation of relational expressions in Query optimization, heuristic optimization, cost estimation for various operations, transformation rule				
	Unit - IV				
 Object Oriented Database Limitations of RDBMS, Need of Complex Data type, Data Definition, ODBMS Fundamentals, issues in OODBMS, Object-oriented database design. Comparison of ORDBMS and OODBMS. Emerging Database Models, Technologies and Applications Multimedia database-Emergence, difference from other data types, structure, deductive databases, GIS and spatial databases, Knowledge database, Information Visualization, Wireless Networks and databases, Personal database, Digital libraries, web databases, case studies. 					
	Total	32			

12. Suggested Books:

Sr. No	Name of Books/ Authors	Year of Publication
1	Advanced database management system by RiniChkrabarti and	2014
	ShibhadraDasgupta, Dreamtech.	
2	Distributed Databases by Ozsu and Valduriez, Pearson Education.	1999
3	Fundamentals of Database Systems by RamezElmasri, ShamkantNavathe, 7 th Edition Pearson Education	2016
4	Database System Concepts by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, 6 th edition reprint Tata McGraw-Hill	2017

<u>Instructions for Question Paper:</u> The question paper consists of two sections A, & B. Each section contains 4 questions. Students will attempt any five questions from both the sections. At least two questions from each section must be attempted. All questions carry equal marks.

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1.Subject Code: MTCS-104	Course Title System)	e: Lab-I (Adv	vance Databas	se	
2. Contact Hours: 16	L: 0	T: 0	P: 4		
3. Examination Duration (Hrs.): -	Theory	0 0	Practical	0 2	
4. Relative Weight: CWA -	LW 100	MTE -	ETE	- EPE	-
5. Credits: 0 2 6. Semes	ter 1				

- 7. Objective: Introduce basic concepts and major techniques in DBMS implementations. These include concepts and techniques for data storage, query processing, and transaction management.
- **8.** Outcomes:

MTCS-104.1	Design and build a simple relational database system and demonstrate competence with the fundamentals tasks involved with modelling, designing and implementing a database.
MTCS-104.2	Apply PL/SQL for processing databases.
MTCS-104.3	Comparison between relational and non-relational (NoSQL) databases and the configuration of NoSQL Databases.
MTCS-104.4	Understand the basic storage architecture of distributed file systems.
MTCS-104.5	Design and deployment of NoSQL databases with real time requirements.

LAB-I (ADVANCE DATABASE SYSTEM)

The Students are required to implement the applications based on

- 1. Fuzzy databases
- 2. Expert databases
- 3. Object-oriented Databases
- 4. Distributed databases
- 5. Library management system
- 6. Crop management system
- 7. On-line sharing of computer systems
- 8. Highway systems
- 9. Hospital management system
- 10. Hotel management system
- 11. University management system
- 12. Inventory control
- 13. Railway management system
- 14. Any other similar database system

RIMT UNIVERSITY

NAME OF DEPT.:	Computer Sc	ience and Engi	neering	
1.Subject Code: MTCS-105	Course Title	: Advance Soft	ware Enginee	ring
2. Contact Hours: 40	L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0
4. Relative Weight: CWA	16 LWA	MTE 24	ETE 6	60 EPE
5. Credits: 0 4 6. Se	mester 2			

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: In this course the student will learn about some of the most advanced topics on Software Engineering. The objective of this course is to teach students the methodology to design and write secure code applying the Secure Software Engineering life Cycle.

10. Outcomes:

o. Outcomes.	
	A general understanding of software engineering, process and software process models.
	Interprets minimum requirements, types of requirements for the development of
MTCS-105.2	application.
	Describes various system models for business processes and understanding the
MTCS-105.3	existing system.
	Develops and maintains efficient reliable software solutions by creating a blue print
MTCS-105.4	for further development
	Constructs SW engineering testing and risk strategies, and develops their appropriate
MTCS-105.5	applications.
MTCS-105.6	Develops critical thinking and evaluate assumptions and argument.

11. Details of the Course:

Sl.	Contents				
No.					
1.	Unit-I	8			
	Software Project Management: Software Project Planning and its				
	characteristics, Types of metrics, Effort Estimation- FP, LOC, FP vs. LOC,				
	Schedule & Cost Estimation Models- Activity Networks-PERT/CPM,				
	COCOMO-I, COCOMO-II, Risk Assessment- Probability Matrix, Risk				
	Management. Agile Methodology- Scrum and XP.				
2.	Unit-II	6			
	Formal Methods: Basic concepts, mathematical preliminaries, applying				
	mathematical notions for formal specification, Formal specification				
	languages, using Z to represent an example software component, the ten				
	commandments of formal methods, Formal methods- the road ahead.	10			
3.	Unit-III	13			
	Component-Based Software Engineering: CBSE process, Domain				
	engineering, Component based development, Classifying and retrieving				
	components and economics of CBSE. Client/Server Software Engineering:				
	Structure of client/server systems, Software engineering for Client/Server				
	systems, Analysis modelling issues, Design for Client/Server systems,				
	testing issues				
	Web Engineering: Attributes Of web-based applications, the Web E process, a framework for WebE. Formulating, Analysing web-based				
	systems, design and testing for web-based applications, Management issues.				
	Unit-IV				
	Reengineering: Business process reengineering, Software reengineering,				
	Reverse reengineering, Restructuring, Forward reengineering, economics of				
	reengineering.				
	Software Quality: CASE tools, metrics, Standards, Certification and				
4.	Assessment. TQM, Bootstrap methodology, The SPICE project, ISO-IEC	13			
	15504, Six Sigma Concept for Software Quality.				
	Computer-Aided Software Engineering: Building Blocks for CASE,				
	taxonomy Of CASE tools, integrated CASE environments, Integration				
	architecture, and CASE repository.				
	Total	40			

12. Suggested Books:

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Software Engineering a Practitioners Approach, Roger S. Pressman,	2014

	McGraw-Hill 8thEdition	
2.	Formal Specification and Documentation testing - A Case Study Approach, J.Bowan, International Thomson Computer Press,	2003
3.	Software Engineering for Embedded Systems: Methods, Practical and Applications, Robert Oshana, Mark Kraeling, Newnes Publisher, 2013	2013
4.	Software Engineering Principles and Practice, Hans Van Vliet, Yded,	2015

Instructions for Question Paper:

The question paper consists of two sections A, & B. Each section contains 4 questions. Students will attempt any five questions from both the sections. At least two questions from each section must be attempted. All questions carry equal marks.

RIMT UNIVERSITY

NAME OF DEPT.:	Computer Sci	ience and Eng	ineering	
1.Subject Code: MTCS-106	Course Title:	Digital Imag	e Processing	
2. Contact Hours: 40	L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory	0 3	Practical 0	0
4. Relative Weight: CWA	16 LW A	MT E 24	ETE 60	EPE
5. Credits: 0 4 6. Se	emester 2			

7. Pre-requisite:

- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: Understand differences between computer vision and image processing. Know the basic components of an image processing system. Understand the basics of the human visual system as they relate to image processing; including spatial frequency resolution and brightness adaption.

10. Outcomes:

MTCS-	Understand the need for image transforms different types of image transforms
106.1	and their properties.
MTCS-	
106.2	Develop any image processing application.
MTCS-	
106.3	Understand the rapid advances in Machine vision.
MTCS-	
106.4	Learn different techniques employed for the enhancement of images.
MTCS-	Learn different causes for image degradation and overview of image restoration
106.5	techniques.

11. Details of the Course:

Sr.	c. Contents			
No.		Hours		
1	Unit-I	5		
1.	Introduction: Digital Image Representation, Fundamental Steps in Image			
	Processing, Elements of a Digital Image Processing System.			

	Digital Image Fundamentals: Elements of Visual Perception, A Simple Image Model, Sampling and Quantization, Some Basic Relationships between Pixels,	
	Unit-II	12
2.	Image Enhancement in Spatial Domain and Frequency Domain: Spatial Domain Methods, Simple Intensity Transformations, Histogram Processing, Image Subtraction, Image Averaging, Smoothing Filters, Sharpening Filters, Lowpass Filtering, High pass Filtering. Introduction to the Fourier Transform, The Discrete Fourier Transform, FFT – DCT. Frequency Domain Methods and Smoothing Filters, Sharpening Filters in frequency domain. Image Restoration: Degradations Model - Definitions, Degradation Model for Continuous Functions, Noise Models, Weiner filtering, Inverse filtering.	
3.	Unit-III Color Image processing: Color Image-Processing Fundamentals, RGB Models, HSI Models, Relationship Between Different Models. Color Image Processing. Image Compression: Fundamentals — Coding Redundancy, Interpixel Redundancy, Psycho visual Redundancy, Fidelity Criteria. Image Compression Models, Loss Less- Variable-Length, Huffman, Arithmetic Coding - Bit-Plane Coding, Loss Less Predictive Coding, Lossy Transform (DCT) Based Coding, JPEG Standard - Sub Band Coding.	
	Unit-IV	
4.	Morphology and Image Segmentation-Dilation, Erosion, Opening and Closing. Hit and Miss Algorithms Feature Analysis. Edge Detection - Line Detection - Curve Detection, region based segmentation, threshold based segmentation. Representation and Object Recognition: - Edge Linking and Boundary Extraction, Boundary Representation, Region Representation and Object recognition methods	12
	Total	40

10. Suggested Books:

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Rafael. C. Gonzalez & Richard E.Woods Digital Image Processing, 4/e Pearson Education, New Delhi.	2018
2.	W.K.PrattDigital Image Processing ,3/e Edn., John Wiley & sons, Inc.	2006
3.	M. Sonka et.al Image Processing, Analysis and Machine Vision, 2/e, Thomson, Learning, India Edition.	2007
4.	Digital Image Processing, Kenneth R Castleman, Pearson Education.	1995
5.	Digital Image Processing, S. Jayaraman, S. Esakkirajan, T. Veerakumar, McGraw Hill Education.	2009

RIMT UNIVERSITY

Computer Science and Engineering NAME OF DEPT.: Course Title: Expert System 1. Subject Code: MTCS-176 2. Contact Hours: 40 L: 3 T: 1 P: 0 3. Examination Duration (Hrs.): **Theory** 3 **Practical** 0 LW MT 4. Relative Weight: **CWA** \mathbf{E} 24 **ETE** 60 **EPE** 16 6. Semester 5. Credits:

7. Pre-requisite:

- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: Provide you with understanding of the role of Artificial Intelligence, Expert Systems and Decision Models in managerial decision-making. Develop abilities to apply, build and modify decision models to solve real problems

10. Outcomes:

MTCS-176.1	Ability to design and develop expert system using Machine Learning
MTCS-176.2	Ability to design and develop expert system using Fuzzy Logic
MTCS-176.3	Ability to design and develop expert system using Deep Learning.
MTCS-176.4	Ability to design and develop Hybrid expert system for real world problems.

11. Details of the Course:

Sr. No	Content	Contact Hrs
	Unit – I	
1	Introduction: Introduction to Expert System, Definitions, Importance of Expert System, characteristics features of Expert System, Applications of Expert System, Different categories of Expert Systems, Rule Based	10

System Architecture, and Neural Network Architecture.	
Knowledge Representations: Components of a Knowledge in Expert system, OAV Triplets, Semantic Networks, Frames Representation via Logic Statements, Production Systems, Clause, Properties Rule properties, Rule Conversions, Multiple Conclusions, Neural Networks via Rule Based System	
Unit – II	
Knowledge Acquisition: Introduction Knowledge Acquisition and domain Expert, Selection of the domain, Selection of the Knowledge Engineers, Selection of the Expert, Meetings and Plans, Organization of Meetings, Documentation, Multiple domain Experts, Knowledge Acquisition -An Example, Knowledge Acquisition using Rule induction, Generating Rules from Trees, ID3 algorithm for Rule Generation	10
Design of Expert System: Introduction, Selecting the appropriate Problem, Stages in the Developing Expert System, Errors in Development stages, Software Engineering and Expert Systems, The Expert System Life Cycle, Expert System Design Examples- Certainty factors, Decision tress.	
Unit – III	
Inference Engine: Inference Engine, Insight of Inference Engine, Search Strategies, Forward Chaining Algorithm, Algorithms for forward Chaining-Baseline Version, Backward Chaining Algorithm, Algorithms for Back word Chaining-Baseline Version, Mixed Modes of Chaining, Work sheets for Forward and Back word Chaining	10
Unit – IV	
Reasoning Under Uncertainty: Uncertainty, Types of Error, Error and Induction, Classic Probability, Temporal Reasoning and Morcov Chines, TMS,Fuzzy Logic and Natural Languages computations, Probabilistic Reasoning, probabilistic Networks, Bayesian Networks. Use of Probability and Fuzzy logic in Expert System, Rule Induction by Machine Learning, Overview of Expert System Tools.	10
	Knowledge Representations: Components of a Knowledge in Expert system, OAV Triplets, Semantic Networks, Frames Representation via Logic Statements, Production Systems, Clause, Properties Rule properties, Rule Conversions, Multiple Conclusions, Neural Networks via Rule Based System Unit – II Knowledge Acquisition: Introduction Knowledge Acquisition and domain Expert, Selection of the domain, Selection of the Knowledge Engineers, Selection of the Expert, Meetings and Plans, Organization of Meetings, Documentation, Multiple domain Experts, Knowledge Acquisition -An Example, Knowledge Acquisition using Rule induction, Generating Rules from Trees, ID3 algorithm for Rule Generation Design of Expert System: Introduction, Selecting the appropriate Problem, Stages in the Developing Expert System, Errors in Development stages, Software Engineering and Expert Systems, The Expert System Life Cycle, Expert System Design Examples- Certainty factors, Decision tress. Unit – III Inference Engine: Inference Engine, Insight of Inference Engine, Search Strategies, Forward Chaining Algorithm, Algorithms for forward Chaining- Baseline Version, Backward Chaining Algorithm, Algorithms for Back word Chaining-Baseline Version, Mixed Modes of Chaining, Work sheets for Forward and Back word Chaining Unit – IV Reasoning Under Uncertainty: Uncertainty, Types of Error, Error and Induction, Classic Probability, Temporal Reasoning and Morcov Chines, TMS, Fuzzy Logic and Natural Languages computations, Probabilistic Reasoning, probabilistic Networks, Bayesian Networks. Use of Probability and Fuzzy logic in Expert System, Rule Induction by Machine

12.Suggested Books

Sr. No	Name of Book	Year
1	Expert System principals and Programming-Giarratano.Rilev.2003	2003
2	Introduction to Expert SystemsV-James P.Iginizo.Mc.Graw-Hill.inc	2012

3	Introduction to Expert Systems Peter Jackson, Addison Wesley Publishing Company	2012
4	Introduction to artificial Intelligence & Expert System- Pan W.patterson.PHI	2014

RIMT UNIVERSITY

NAME OF DEPT.:

Computer Science and Engineering

1. Subject Code: MTCS-140 Course Title: Information Security

2.Contact Hours: **40** L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory 0 3 Practical 0 0

4. Relative Weight: CWA 16 LW A - E 24 ETE 60 EPE

5. Credits: **0 4** 6. Semester **2**

- 7. Pre-requisite:
- 8. Subject Area: Departmental Course (DC)
- 9. Objective: To learn the ability to understand Information Security concepts, their architecture, tools and protocols used.
- 10. Outcomes:

Define what information is appreciate the value of information to the modern Organisation
Understand the CIA triad of Confidentiality, Integrity and
Appreciate the difficulties that arise when valuable information needs to be shared
Identify the five leading-edge resources that have up-to-date information on information security.

11. Details of Course:

S.No	Contents			
	Unit-I			
1.	Overview: Computer Security Concepts, Requirements, Architecture, Trends, Strategy, Edge/boundary Security: Firewalls, Intrusion Detection, Intrusion Prevention systems, Honeypots. User Authentication : Password, Password-based authentication, token based authentication, Biometric authentication, Remote User authentication	9		
2.	Unit-II	14		

	Access Control: Principles, Access Rights, Discretionary Access Control, Unix File Access Control, Role Based Access Control Internet Authentication Applications: Kerberos, X.509, PKI, Federated Identity Management. Cryptographic Tools: Confidentiality with symmetric encryption, Message Authentication & Hash Functions, Digital Signatures, Random and pseudorandom Numbers. Symmetric Encryption and Message Confidentiality: DES, AES, Stream Ciphers, Cipher Block Modes of Operation, Key Distribution.		
	Unit-III		
3.	Internet Security Protocols: SSL, TLS, IPSEC, S/ MIME.		
3.	Database Security: The Need for Database Security, Database Management		
	Systems, Relational Databases, Database Access Control, Inference, Statistical		
	Databases, Database Encryption, Cloud Security		
	Unit-IV		
	Malicious Software: Types of Malicious Software (Malware), Propagation—		
	Infected Content— Viruses, Propagation—Vulnerability Exploit—Worms,		
4.	Propagation-Social Engineering-SPAM Email, Trojans, Payload-System	7	
	Corruption, Payload-Attack Agent-Zombie, Bots, Payload- Information		
	Theft-Keyloggers, Phishing, Spyware, Payload-Stealthing-Backdoors,		
	Rootkits.		

11. Suggested Books:

Sl. No.	Name of Books / Authors	Year of Publication
1	Computer Security: Principles and Practice, William Stalling & Lawrie Brown, 4 th Edition, Pearson	2018
2	Chuck Easttom, "Computer Security Fundamentals" Pearson	2011
3	M. Stamp, "Information Security: Principles and Practice," 2nd Edition, Wiley.	2011
4	M. E. Whitman and H. J. Mattord, "Principles of Information Security," 4th Edition.	2011
5	M. Bishop, "Computer Security: Art and Science," Addison Wesley.	2002

Instructions for Question Paper:

The question paper consists of two sections A, & B. Each section contains 4 questions. Students will attempt any five questions from both the sections. At least two questions from each section must be attempted. All questions carry equal marks.

RIMT UNIVERSITY

NAME OF DEPT.:	Computer Sci	ence and Engi	neering	
1.Subject Code: MTCS-141	Course Title: Distributed System			
2. Contact Hours: 40	L: 3	T: 1	P: 0	
3. Examination Duration (Hrs.):	Theory	0 3	Practical 0	0
4. Relative Weight: CWA	16 LWA	MTE 24	4 ETE 60	ЕРЕ
5. Credits: 0 4 6. See	mester: 2			

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: To study the various types of distributed systems, Models and various it's various features. To give the introduction of Inter-process communication and other features. Also, the details of distributed file systems. To give the students an introduction of various services like name services, name system etc., and distributed transaction features.
- 10. Outcomes:

MTCS-141.1	understanding of the concepts that underlie distributed computing systems
MTCS-141.2	Define key mechanisms and analyze different models for distributed systems.
MTCS-141.3	Correlate the different types of file system naming and messaging services which are used by different client processes.
MTCS-141.4	Compare the concurrency control mechanisms in distributed transactional environment.
MTCS-141.5	Outline the need for mutual exclusion and election algorithms in distributed systems

11. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	UNIT-I	6
	Characterization of Distributed Systems: Introduction, System models	
	-Architectural and fundamental models with examples.	
	Operating System Support: Operating System layer, Protection,	
	processes and threads, operating system architecture.	
2.	UNIT-II	7
	Interprocess communication: API for internet protocol, Marshalling,	
	Client server communication and group communication.	
	Distributed objects and remote invocation : communication between	
	Distributed objects, RPC and characteristics.	
3.	UNIT-III	10
	Distributed File System : File service architecture, network file system,	
	Sun network file system, Andrew file system.	
	Case Study: Unix	
	Name services: Name services and domain name system, directory and	
	discovery services.	
	Case Study: Global Name service	
4.	UNIT-IV	17
	Transaction and concurrency control: transactions, nested transactions,	
	Locks, optimistic concurrency control, time stamp ordering, Comparison	
	of methods for concurrency control	
	Distributed transaction: Flat and nested distributed transactions. Atomic	
	Commit protocol, Distributed dead locks.	
	Distributed Multimedia systems: characteristics of multimedia,	
	multimedia data. Quality of service management, resource management,	
	stream adaptation.	
	Case study; Tiger video file server.	
	Total	40

11. Suggested Books:

Sl.	Name of Books / Authors	Year of
No.		Publication
1	A.S. Tanenbaum, Modern operating Systems, Prentience Hall, 3 rd Edition.	2015
2.	Seema Shah, et. al. Distributed Systems.	2011
3.	G. Coulouis, et al. Distributed Systems: Concepts and design, Pearson	2004
	Education Asia.	

Instructions for Question Paper:

The question paper consists of two sections A, & B. Each section contains 4 questions. Students will attempt any five questions from both the sections. At least two questions from each section must be attempted. All questions carry equal marks.

RIMT UNIVERSITY

NAME OF DEPT.:	Computer Scie	nce and Engir	neering		
1.Subject Code: MTCS-142	Course Title: C	Cryptography Network Secu			
2. Contact Hours: 32	L: 3	T: 1	P :	0	
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0	
4. Relative Weight: CWA 10	6 LWA -	MTE 24	ETE	60 EPE	-
5. Credits: 0 4 6. Sem	ester: 2				

7. Pre-requisite:

8. Subject Area: **Departmental Course** (**DC**)

9. Objective: The main objective of this course is to make student able to understand the basic concepts, services, threats and principles in network security, various security services and mechanisms in the network protocol stack.

10. Outcomes:

MTCS-142.1	Classify the symmetric encryption techniques.
MTCS-142.2	Illustrate various Public key cryptographic techniques
MTCS-142.3	Evaluate the authentication and hash algorithms.
MTCS-142.4	Discuss authentication applications.
MTCS-142.5	Basic concepts of system level security.

11. Details of the Course:

Sl.	Contents	Contact
No.		Hours
1.	UNIT-I	8
	Security trends, Attacks and services, Classical crypto systems, Different	
	types of ciphers, LFSR sequences, Basic Number theory, Congruences,	
	Chinese Remainder theorem, Modular exponentiation, Fermat and Euler's	

	theorem, Legendre and Jacobi symbols, Finite fields, continued fractions.	
	UNIT-II	
2.	Simple DES, Differential crypto analysis, DES – Modes of operation, Triple DES, AES, RC4, RSA, Attacks – Primality test – factoring.	6
3.	UNIT-III	8
	Discrete Logarithms, Computing discrete logs, Diffie-Hellman key exchange, ElGamal Public key cryptosystems, Hash functions, Secure Hash, Birthday attacks, MD5, Digital signatures, RSA, ElGamal DSA.	
4.	UNIT-IV	10
	Authentication applications — Kerberos, X.509, PKI — Electronic Mail security — PGP, S/MIME — IP security — Web Security — SSL, TLS, SET. Intruders, Malicious software, viruses and related threats, Firewalls, Security Standards.	

11. Suggested Books:

Sl. No.	Name of Rooks / Authors	Year of Publication
	Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd ed, Pearson.	2007
	William Stallings, "Cryptography and Network Security Principles and Practices", Pearson/PHI, 4th ed.	2006
	W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, Second Edition.	2007
	Charles P. Pfleeger, Shari Lawrence Pfleeger – Security in computing Third Edition –Prentice Hall of India.	2006
5.	Behrouz Forouzan, Cryptography & Network Security, McGraw-Hill, 2nd ed.	2011

Instructions for Question Paper:

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1.Subject Code: MTCS-143	Course title: Web Mining
2. Contact Hours: 40	L: 3 T: 1 P: 0
3. Examination Duration (Hrs.):	Theory 0 3 Practical 0 0
4. Relative Weight: CWA 16	LW
5. Credits: 0 4 6. Semest	ter 2

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course** (**DC**)
- 9. Objective: Web Mining is one of the main activities in the complex process of Knowledge Discovery in Databases (KDD). The course deals with the fundamentals of this subject, by focusing on the most important algorithmic techniques.
- 10. Outcomes:

MTCS- 143.1	Have the ability to describe key areas such as OLAP (that stands for On Line Analytical Processing) Design, Data Warehousing (DW) and Data Mining (DM) and various tasks in Data preprocessing
MTCS- 143.2	Have the ability to provide an overview of most common tasks and application areas of data warehousing and classification
MTCS- 143.3	Have the ability to provide an overview of Association and Cluster Analysis
MTCS- 143.4	Grasp the idea and implementation of most common techniques used in Data mining and Warehousing
MTCS- 143.5	Fully appreciate the necessary background and skills to turn available data into valuable and useful information

Sl. No.		Contact Hours
	Contents	
1.	UNIT-I Data mining Overview and Advanced Pattern Mining Data mining tasks — mining frequent patterns, associations and correlations, classification and regression for predictive analysis, cluster analysis, outlier analysis; advanced pattern mining in multilevel, multidimensional space — mining multilevel associations, mining multidimensional associations, mining quantitative association rules, mining rare patterns and negative patterns.	9
	UNIT-II	
2.	Advance Classification Classification by back propagation, support vector machines, classification using frequent patterns, other classification methods – genetic algorithms, roughest approach, fuzz>set approach; Advance Clustering Density - based methods –DBSCAN, OPTICS, DENCLUE; Grid-Based methods – STING, CLIQUE; Exception – maximization algorithm; clustering High- Dimensional Data; Clustering Graph and Network Data.	17
	UNIT-III	
3.	Web and Text Mining Introduction, web mining, web content mining, web structure mining, we usage mining, Text mining – unstructured text, episode rule discovery for texts, hierarchy of categories, text clustering.	
	UNIT-IV	
4.	Temporal and Spatial Data Mining Introduction; Temporal Data Mining — Temporal Association Rules, Sequence Mining, GSP algorithm, SPADE, SPIRIT Episode Discovery, Time Series Analysis, Spatial Mining — Spatial Mining Tasks, Spatial Clustering. Data Mining Applications.	7
	Total	40

11. Suggested Books

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Data Mining Concepts and Techniques, Jiawei Hang Micheline Kamber,	2011
	Jian pei, Morgan, Kaufmannn.	
2.	Data Mining Techniques – Arun K pujari, Universities Press.	2011

Instructions for Question Paper:

RIMT UNIVERSITY

Computer Science and Engineering NAME OF DEPT.: **Data Ware Housing & Data** Course Title: 1.Subject Code: MTCS-144 Mining 2. Contact Hours: 38 L: 3 T: 1 P: 0 **Practical** 3. Examination Duration (Hrs.): Theory 0 3 **CWA** 16 **LWA** MTE 24 **ETE EPE** 4. Relative Weight: 60 5. Credits: 6. Semester 2 4

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: To learn the ability to understand Data warehousing concepts, various models used for analyzing and exploring the data. To learn the ability to understand Data Mining Concepts and web mining.

10. Outcomes:

	-
MTCS-144.1	Understand the data Warehouses, Operational Data Stores (ODS) and OLAP characteristics
MTCS-144.2	Classify the kinds of data, functionalities, issues in data mining, similarity and dissimilarity measures and illustrate various preprocessing, Visualization techniques for Data analysis.
MTCS-144.3	Analyze the frequent patterns using association analysis algorithms like apriori, FP-growth etc
MTCS-144.4	CO3 Build Classification model using Decision tree, Naive Bayes, Rule based, support vector machines and evaluate the performance of a classifier
MTCS-144.5	Create cluster using different cluster analysis methods

11. Details of Course:

S.No	Contents	Contact Hours
	UNIT-I	
1.	Data warehousing: Introduction, ETL, Data warehouses—design guidelines for data warehouse implementation, Multidimensional Models; OLAP-introduction, Characteristics, Architecture, Multidimensional view and data cube, Data cube operations, data cube computation.	13
	Review of the Basic Data Analytic Methods using R : Introduction to R – look at the data, Analyzing and Exploring the Data, Statistics for Model Building and Evaluation.	
	UNIT-II	
2.	Data mining: Introduction, association rules mining, Naive algorithm, Apriori algorithm, direct hashing and pruning (DHP), Dynamic Item set counting (DIC), Mining frequent pattern without candidate generation (FP, growth), performance evaluation of algorithms,	7
	UNIT-III	
3.	Classification: Introduction, decision tree, tree induction algorithms – split algorithm based on information theory, split algorithm based on Gini index; naïve Bayes method; estimating predictive accuracy of classification method.	8
	Cluster analysis: Introduction, partitional methods, hierarchical methods, density based methods, dealing with large databases, cluster software;	
	UNIT-IV	
4.	Search engines: Characteristics of Search engines, Search Engine Functionality, Search Engine Architecture, Ranking of web pages, The search engine history, Enterprise Search, Enterprise Search Engine Software.	10
	Web data mining: Web Terminology and Characteristics, Locality and Hierarchy in the web, Web Content Mining, Web Usage Mining, Web Structure Mining, Web mining Software.	

11. Suggested Books:

Sl. No.	Name of Books / Authors	Year of Publication
1	Carlo Vercellis, Business Intelligence: Data mining and Optimization for Decision Making, WILEY.	2009
2	Han J., Kamber M. and Pei J., bData mining concepts and techniques,	2011

	Morgan Kaufmann Publishers (2011) 3rd ed.	
3	Pudi V., Krishana P.R., Data Mining, Oxford University press, 1st edition	2009
4	Adriaans P., Zantinge D., Data mining, Pearsoneducation press 1st edition	1996
5	Pooniah P., Data Warehousing Fundamentals, Willey interscience Publication, 1st edition	2001

Instructions for Question Paper:

RIMT UNIVERSITY

0

NAME OF DEPT.: Computer Science and Engineering

1. Subject Code: MTCS-145 Course Title: Information Retrieval

2. Contact Hours: **40** L: **3** T: **1** P:

3. Examination Duration (Hrs.): Theory 0 3 Practical 0 0

4. Relative Weight: CWA 16 LWA - MTE 24 ETE 60 EPE

5. Credits: **0 4** 6. Semester **2**

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
 - 9. Objective: In this course, you will learn the underlying technologies of these and other powerful tools for accessing and mining text Information. You will be able to learn the basic principles and algorithms for information retrieval as well as obtain hands-on experience with using existing information retrieval toolkits to set up your own search engines and improving their search accuracy.
 - 10. Outcomes: Student will be able to:

MTCS-145.1	Describe the objectives of information retrieval systems.
MTCS-145.2	Describe models like vector-space, probabilistic and language models to identify the similarity of query and document.
MTCS-145.3	Implement clustering algorithms like hierarchical agglomerative clustering and k-means algorithm.
MTCS-145.4	Understand relevance feedback in vector space model and probabilistic model.
MTCS-145.5	Illustrate how N-grams are used for detection and correction of spelling errors.
MTCS-145.6	Design the method to build inverted index.
MTCS-145.6	Describe the objectives of information retrieval systems.

11. Details of the Course:

SNO.	CONTENTS	CONTACT HOURS
	UNIT-I	
	Introduction to information retrieval Mathematical basics	
1	Vector spaces and similarity, Probabilities and Statistics	11
	Text Analysis and Preprocessing Document processing, stemming, String matching, Basic NLP tasks – POS tagging, shallow parsing	
	UNIT-I	
2	Overview of text retrieval systems: System architecture, Boolean models, Inverted Indexes, Document ranking, IR Evaluation Retrieval models and implementation: Vector Space Models	12
	Vector space models, TF-IDF weighting, Retrieval axioms, Implementation issues.	
	UNIT-I	
3	Probabilistic models; statistical language models Okapi/BM25, Language models, KL-divergence, Smoothing;	11
	Query expansion and feedback Query reformulation; Relevance feedback, Pseudo-relevance feedback, Language model based feedback	
	UNIT-I	
4	Web Search Engines, Models of the Web, Web crawling, Static ranking, PageRank, HITS, Query log analysis, Adversarial IR	6

11. Suggested Books:

SNO.	Name of Books / Authors	Year of
		Publication
1.	Introduction to information retrieval Christopher D. Manning, Hinrich	2008
	Schütze, and Prabhakar Raghavan	
2.	Modern Information Retrieval	1999
3.	Search Engines: Information Retrieval in Practice Donald Metzler,	2010

Trevor Strohman, and W. Bruce Croft	

Instructions for Question Paper:

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1.Subject Code: MTCS-107 Course Title: Advance Software Engineering (Lab)

3. Examination Duration (Hrs.): Theory 0 0 Practical 0 2

4. Relative Weight: CWA - LWA 100 MTE - ETE - EPE

5. Credits: **0 2** 6. Semester **2**

7. Objectives: In this course the student will learn about some of the most advanced topics on Software Engineering. The objective of this course is to teach students the methodology to design and write secure code applying the Secure Software Engineering life Cycle.

8. Course Outcomes:

	Demonstrate knowledge of the wider software engineering context, software engineering processes
CO1	and their applicability.
	Understand a problem domain and to elicit, analyze, and specify the requirements of a software
CO2	system solution.
CO3	Describe and formulate test cases to perform different levels of testing.
CO4	Identify and outline specific components of a software design that can be targeted for reuse.
CO5	Analyze the engineering problems encountered in system and software development

LAB-2 (ADVANCE SOFTWARE ENGINEERING)

Course Outcomes:

	ourse outcomes.			
MTCS-107.1	Analyze and prepare SRS document and design document.			
MTCS-107.2	Analyze the data flow with the entities and their relationship to develop DFD model of the project.			
MTCS-107.3	Use Case model to capture the functional requirements of a any problem			
MTCS-107.4	Design the dynamic view of an application by identifying the objects and the interaction between them			
MTCS-107.5	Design the static view of an application by identifying the classes and the relationship between them.			

The Students are required to implement the applications based on

- 1. Fuzzy databases
- 2. Expert databases
- 3. Object-oriented Databases
- 4. Distributed databases
- 5. Library management system
- 6. Crop management system
- 7. On-line sharing of computer systems
- 8. Highway systems
- 9. Hospital management system
- 10. Hotel management system
- 11. University management system
- 12. Inventory control
- 13. Railway management system
- 14. Any other similar database system

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1. Subject Code: MTCS-108 Course Title: Soft Computing

2. Contact Hours: **40 L: 3 T: 1 P: 0**

3. Examination Duration (Hrs.): Theory 0 3 Practical 0 0

4. Relative Weight: CWA 16 LW A - MTE 24 ETE 60 EPE -

5. Credits: **0 4** 6. Semester: **3**

- 7. Subject Area: **Departmental Course (DC)**
- 8. Objective: The Objective of this course is to teach basic neural networks, fuzzy systems, Genetic Algorithms and optimization algorithms concepts and their relations.
- 9. Course Outcome:

MTCS-108.1	Understand the concepts of Neuro, Fuzzy and Soft Computing and understand the Input Space partitioning and Fuzzy Modeling.
MTCS-108.2	To understand the concepts of Genetic Algorithm and understand the Working Principle, Procedure of GA.
MTCS-108.3	Analyse the concept of Derivative-based Optimization and Simulated Annealing, Random Search, Downhill Simplex Search and their application development.
MTCS-108.4	Apply the concept of Supervised Learning Neural Networks and Unsupervised Learning Neural Networks their application in the field of computer science to solve problems
MTCS-108.5	Design Neuro Fuzzy Modeling using Methods that Cross-fertilize ANFIS and RBFN and Framework Neuron Functions for Adaptive Networks, Neuro Fuzzy Spectrum.

Sr. No.	Contents	Contact Hours
1.	Unit-I	5
	Soft Computing: Introduction of soft computing, soft computing vs. hard	-
	computing, various types of soft computing techniques, applications of soft	
	computing.	
2.	Unit-II	10
	Fuzzy Logic: Fuzzy set versus crisp set, basic concepts of fuzzy sets,	
	membership functions, basic operations on fuzzy sets and its properties.	
	Fuzzy relations versus Crisp relation. Fuzzy rule base system: Fuzzy	
	propositions, fuzzy rules, fuzzy reasoning, Fuzzy Inference Systems (FIS) –	
	Fuzzification and Defuzzification, fuzzy decision making & Applications of	
3.	fuzzy logic. Unit-III	10
] 3.	Structure and Function of a Single Neuron: Biological neuron, artificial	10
	neuron, definition of ANN and its applications. Neural Network architecture:	
	Single layer and multilayer feed forward networks and recurrent networks.	
	Learning rules and equations: Perceptron, Hebb's, Delta, winner take all and	
	out-star learning rules. Supervised and Unsupervised Networks.	
4.	Unit-IV	
	Genetic Algorithm: Fundamentals, basic concepts, working principle,	
	encoding, fitness function, reproduction, Genetic modeling: selection	
	operator, cross over, mutation operator, Stopping Condition and GA flow,	
	Constraints in GA, Applications of GA, Classification of GA. Hybrid Soft	
	Computing Techniques: An Introduction, Neuro-Fuzzy Hybrid Systems,	
	Genetic Neuro-Hybrid systems, Genetic fuzzy Hybrid and fuzzy genetic	
	hybrid systems.	15
	Total	40

S.NO	Name of Books
1	S. Rajasekaran & G.A. Vijayalakshmi Pai, 'Neural Networks, Fuzzy Logic & Genetic
1	Algorithms, Synthesis & applications', 1st Edn., PHI Publication, 2003.
	S.N. Sivanandam& S.N. Deepa, 'Principles of Soft Computing', 2nd Edn., Wiley
2	Publications, 2008.
3	Michael Negnevitsky, 'Artificial Intelligence', 2nd Edn., Pearson Education, New
	Delhi, 2008.
4	Timothy J. Ross, 'Fuzzy Logic with Engineering Applications', 3rd Edn., Wiley, 2011.
5	Bose, 'Neural Network fundamental with Graph, Algoithm & Application', TMH,
	2004.
6	Kosko, 'Neural Network & Fuzzy System', 1st Edn., PHI Publication, 2009.

7	Klir & Yuan, 'Fuzzy sets & Fuzzy Logic: Theory & Application', PHI, 1995
8	Hagen, 'Neural Network Design', 2nd Edn., Cengage COURSE, 2008.

Instructions for Question Paper:

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1.Subject Code: MTCS-146	Course Tit	le: Software T	esting and Valid	dation
2. Contact Hours: 40	L: 3	T: 1	P: 0	

3. Examination Duration (Hrs.): Theory 0 3 Practical 0 0

4. Relative Weight: CWA 16 LWA - MTE 24 ETE 60 EPE -

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: Software Testing is a critical element of software quality assurance and represents the ultimate review of a system's source code with the intent of discovering bugs. Presents theory and practice of software testing. Covers structural testing including such topics as syntax testing, mutation testing, tools for software testing, testing specifications, black-box and white-box testing, code inspections, metrics, usability testing, testing documentation, website testing, security testing, beta testing, quality assurance, and software safety.

10. Outcomes:

MTCS-146.1	Understand the functional and system testing methods.
MTCS-146.2	Analyze the different characteristics of structural testing methods
MTCS-146.3	Demonstrate the integration testing which aims to uncover interaction and compatibility problems as early as possible.
MTCS-146.4	Deploy different software testing techniques and strategies and be able to apply specific(automated) unit testing method to the projects.

SNC	. CONTENTS	CONTACT HOURS
1	Unit-I	10
	Introduction to Software Testing, Software Safety, Software Testing	

	Realities Testing Software Specifications	
2	White-box Testing (Part 1: Control-flow Testing) Testing Tools, White-box Testing (Part 2: Data-flow Testing) Testing Tools	12
3	Website Testing, Usability Testing Website Validation (Case Study): Revealing Design Treasures from the Amazon (Jared Spool), Genetic Algorithms Other Resources on Genetic Algorithms	12
4	Code Inspections, Testing the Documentation, Software Metrics, Testing for Security	6

11. Suggested Books:

SNO.	Name of Books / Authors	Year of
		Publication
1.	Software Quality Approaches: Testing, Verification, and Validation: Software Best Practice 1 Michael Haug (Editor), Eric W. Olsen (Editor), Luisa Consolini (Editor)	2001
2.	Software Quality Engineering: Testing, Quality Assurance and Quantifiable Improvement Jeff Tian	2006

Instructions for Question Paper:

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1.Subject Code: MTCS-147	Course Title:	Software Enand Method	0	Concepts	
2. Contact Hours: 40	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0	
4. Relative Weight: CWA 16	LWA -	MTE 24	ETE	60 EPE	-
5. Credits: 0 4 6. Semes	ster 3				

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
- 9. Objective: In this course the student will learn about some of the most advanced topics on Software Engineering. The objective of this course is to teach students the methodology to design and write secure code applying the Secure Software Engineering life Cycle.
- 10. Outcomes

MTCS-147.1	To acquire Basic knowledge and understanding of the analysis and
	design of complex systems,
MTCS-147.2	Ability to apply software engineering principles and techniques
MTCS-147.3	To produce efficient, reliable, robust and cost-effective software solutions
MTCS-147.4	Ability to develop, maintain and evaluate large-scale software systems
MTCS-147.5	To manage time, processes and resources effectively by prioritising competing demands to achieve personal and team goals

Sl. No.		Contact Hours
	Contents	
1	Unit-I	12
	Project Management: The management spectrum, The People; stakeholders, software team, Agile teams, coordination and communication issues, the product; problem decomposition, the process; modeling the product and process, process decomposition, The W5 HH principle, RAD model, Metrics for process and projects, software measurements. Agile Methodology- Scrum and XP. Cleanroom Software	

	Engineering: The cleanroom approach, Functional specification,	
	Cleanroom design and testing.	
	Unit-II	
	Formal Methods: Basic concepts, mathematical preliminaries, Applying	
	mathematical notions for formal specification, Formal specification	
	languages, Z specification Language, Formal methods- the road ahead,	
	Reengineering: Business process reengineering, Software reengineering,	
	Reverse reengineering, Restructuring, Forward reengineering, economics	
2	of reengineering.	12
3.	Unit-III	10
	Component-Based Software Engineering: Engineering of component -	
	based systems, CBSE process, Domain engineering, Component-based	
	development, Classifying and retrieving components and economics of	
	CBSE. Computer-Aided Software Engineering: Building Blocks for	
	CASE, taxonomy of CASE tools, integrated CASE environments,	
	Integration architecture, and CASE repository	
4	Unit-IV	6
	Software Testing: Testing, Verification and Validation, Test Strategies	
	for Conventional and Object Oriented Software, Unit Testing, Integration	
	Testing, Validation Testing, Alpha and Beta Testing, System Testing,	
	Recovery Testing, Security Testing, Stress Testing, Performance Testing,	
	Metrics for Source Code, Metrics for Testing, Debugging Process,	
	Debugging Strategies.	
		40
	Total	40

11. Suggested Books

Sl.	Name of Books / Authors	Year of
No.		Publication
	Roger S. Pressman, Software Engineering a Practitioners Approach,	
	McGraw-Hill, 8 th Ed.,	
1.		2016
2.	Sommerville, Software Engineering, Pearson, 7th Ed.,	2005
	J. Bowan, Formal Specification and Documentation testing - A Case	
3.	Study Approach, International Thomson Computer Press	2003
	James S. Peters, Witold Pedrycz, Software engineering an engineering	
4.	approach, Wiley India,	2011

Instructions for Question Paper:

RIMT UNIVERSITY

Computer Science and Engineering NAME OF DEPT.: Course Title: Business Intelligence and 1.Subject Code: MTCS-148 **Application** 2. Contact Hours: 40 L: 3 T: 1 P: 0 3. Examination Duration (Hrs.): **Theory** 0 3 **Practical** 0 4. Relative Weight: **CWA** 16 LWA MTE ETE 60 **EPE**

5. Credits: 0 4 6. S

6. Semester 3

- 7. Pre-requisite:
- 8. Subject Area: Departmental Course (DC)
- 9. **Objectives:**
 - To Implement the key elements of a successful business intelligence (BI) program
 - To Apply a BI meta model that turns outcomes into actions
 - To Extract and transform data from an operational data to a data business data
 - To Exploit business analytics and performance measurement tools

10. Outcomes:

MTCS-148.1	Understanding the concepts and components of Business Intelligence (BI).
MTCS-148.2	To evaluate use of BI for supporting decision making in an organisation.
MTCS-148.3	Understand and use the technologies and tools that make up BI (e.g. Data warehousing, Data reporting and use of Online analytical processing (OLAP))
MTCS-148.4	Understand and design the technological architecture that underpins BI systems

Sl. No	Content	Contact Hours
1	Unit-I Development Steps, BI Definitions, BI Decision Support Initiatives, Development Approaches, Parallel Development Tracks, BI Project Team Structure, Business Justification, Business Divers, Business Analysis Issues, Cost – Benefit Analysis, Risk Assessment, Business Case Assessment Activities, Roles Involved In These Activities, Risks Of Not Performing Step, Hardware, Middleware, DBMS Platform, Non Technical Infrastructure Evaluation	10
2	Unit-II	8

	Managing The BI Project, Defining And Planning The BI Project, Project Planning Activities, Roles And Risks Involved In These Activities, General Business Requirement, Project Specific Requirements, Interviewing Process	
3	Unit-III Differences in Database Design Philosophies, Logical Database Design, Physical Database Design, Activities, Roles And Risks Involved In These Activities, Incremental Rollout, Security Management, Database Backup And Recovery	8
4	Unit-IV Growth Management, Application Release Concept, Post Implementation Reviews, Release Evaluation Activities, The Information Asset and Data Valuation, Actionable Knowledge – ROI, BI Applications, The Intelligence Dashboard. Business View of Information Technology Applications: Business Enterprise excellence, Key purpose of using IT, Type of digital data, basics f enterprise reporting, BI road ahead.	14

11. Suggested Books.

		Publicatio
Sl. No	Name of Books / Authors	n Year
	Larissa T Moss and Shaku Atre – Business Intelligence Roadmap: The	
	Complete Project Lifecycle for Decision Support Applications, Addison	
1.	Wesley Information Technology Series, 2003.	2003
	R N Prasad, Seema Acharya – Fundamentals of Business Analytics 2 nd	
2.	edition, Wiley India.	2016

Instructions for Question Paper:

RIMT UNIVERSITY

NAME OF DEPT.: Computer Science and Engineering

1. Subject Code: MTCS-149 Course Title: Big Data

3. Examination Duration (Hrs.): Theory 0 3 Practical 0 0

4. Relative Weight: CWA 16 LWA - MTE 24 ETE 60 EPE -

5. Credits: **0 4** 6. Semester **3**

7. Pre-requisite:

8. Subject Area: Departmental Course (DC)

Sl.	Contents	Contact
No.		Hours
1.	Unit-I Introduction: Velocity, Variety, Veracity; Drivers for Big Data, Sophisticated Consumers, Automation, Monetization, Big Data Analytics Applications: Social Media Command Center, Product Knowledge Hub, Infrastructure and Operations Studies, Product Selection, Design and Engineering, Location-Based Services, Online Advertising, Risk Management	9
2.	Unit II Architecture Components: Massively Parallel Processing (MPP) Platforms, Unstructured Data Analytics and Reporting: Search and Count, Context-Sensitive and Domain-Specific Searches, Categories and Ontology, Qualitative Comparisons, Data Privacy Protection, Real-Time Adaptive Analytics and Decision Engines	8
3.	Unit-III Analysis of data at Rest- Hadoop analytics: Limitations of existing distributing systems, Hadoop Approach, Hadoop Architecture, Distributed file system: HDFS and GPFS, Internals of Hadoop MR engine, Need for High level language- JAQL and PIG	
4.	Unit-IV Mining Data Streams: Stream Data Mode 1 and Management Stream Source, Stream Queries, and issues, Sampling Data in a Stream, Filtering	_

·	Total	40
	Hubs and Authorities	
	MapReduce and other approaches, Topic-Sensitive PageRank, Link Spam,	
	Ranking in web search engines, Efficient Computation of PageRank using	
	Counting Ones in a Window, Decaying Windows Link Analysis: Page	
	Streams, Counting Distinct Elements in a Stream, Estimating Moments,	

9. Objectives:

- Introduce students the concept and challenge of big data (3 V's: volume, velocity, and variety).
- Teach students in applying skills and tools to manage and analyze the big data.

10. Outcomes:

MTCS-149.1	To handle the big data issues and implementation in various application in theindustry.		
MTCS-149.2	To understand the machine learning based modelling techniques and its implementation.		
MTCS-149.3	To understand and implement the classification-based model such as decision tree, and Bayesian.		
MTCS-149.4	To check the model validity and its performance based on performance metrics and understand the data collection and visualization.		
MTCS-149.5	To create chart based pictorial presentation of data with animation.		

11. Details of the Course:

11. Suggested Books

S. No	Name of Book / Author	Publication year
1	Big Data Analytics:Disruptive Technologies for Changing the Game, Dr. Arvind Sathi,, First Edition October 2012, IBM Corporation .	2012
2	Mining of Massive Datasets, Anand Rajarama, Jure Leskovec, Jeffrey D. Ullman.E-book, 2013	2013

Instructions for Question Paper:

NAME OF DEPT.:	_	JNIVERS er Science a		eering	
1.Subject Code: MTCS-150	Course Titl	e: Natural L	∡anguage I	Processin	g
2. Contact Hours: 40	L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory	0 3	Practical	0 0	
4. Relative Weight: CWA	16 LWA	MTE 24	ETE	60 EPE	
5. Credits: 0 4 6.	Semester: 3				

- 7. Pre-requisite:
- 8. Subject Area: **Departmental Course (DC)**
 - 9. Objective: This course provides an introduction to the field of Natural Language Processing. It includes relevant background material in Linguistics, Mathematics, Probabilities, and Computer Science. Some of the topics covered in the class are Text Similarity, Part of Speech Tagging, Parsing, Semantics, Question Answering, Sentiment Analysis, and Text Summarization

10. Outcomes:

MTCS-150.1	Basics of text components and text processing.
MTCS-150.2	To differentiate among different techniques while considering different plus andminus of each technique.
MTCS-150.3	To classify text, reduce Dimensionality, use different Topic Modelling Approaches and Algorithms.
MTCS-150.4	Ability to understand the advanced processor architecture and concept of RTOS.
MTCS-150.5	Analyze text data from different real-world situations.

SNO.	CONTENTS	CONTACT
		HOURS
1	Unit-I Introduction; what is Natural Language Processing, hands-on demonstrations. Ambiguity and uncertainty in language. The Turing test. Regular Expressions: Chomsky hierarchy, regular languages, and their limitations. Finite-state automata. Practical regular expressions for finding and counting language phenomena. A little morphology.	6
3	Unit-II	9
	Programming in Python	
	An introduction to programming in Python. Why Python? Variables, numbers, strings, arrays, dictionaries, conditionals, iteration. The NLTK (Natural Language Toolkit), with demonstrations.	
	String Edit Distance and Alignment Key algorithmic tool: dynamic programming, first a simple example, then its use in optimal alignment of sequences. String edit operations, edit distance, and examples of use in spelling correction, and machine translation. String Edit Distance and Alignment Key algorithmic tool: dynamic programming, first a simple example, then its use in optimal alignment of sequences. String edit operations, edit distance, and examples of use in spelling correction, and machine translation	
3	Unit-III Context Free Grammars Constituency, CFG definition, use and limitations. Chomsky Normal Form. Top-down parsing, bottom-up parsing, and the problems with each. The desirability of combining evidence from both directions.	12
	Non-probabilistic Parsing Efficient CFG parsing with CYK, another dynamic programming algorithm. Also, perhaps, the Earley parser.	

	Designing a little grammar, and parsing with it on some test data.	
	Probability Introduction to probability theorythe backbone of modern natural language processing. Events, and counting. Joint and conditional probability, marginal, independence, Bayes rule, combining evidence. Examples of applications in natural language.	
4.	Unit-IV	13
	Information Theory What is information? Measuring it in bits. The	
	"noisy channel model." The "Shannon game"motivated by	
	language! Entropy, cross-entropy, information gain. Its application to	
	some language phenomena.	
	Language modeling and Naive Bayes Probabilistic language modeling and its applications. Markov models. N-grams. Estimating the probability of a word, and smoothing. Generative models of language. Their application to building an automatically-trained email spam filter, and automatically determining the language (English, French, German, Dutch, Finnish, Klingon?).	
	Part of Speech Tagging and Hidden Markov Models The concept	
	of parts-of-speech, examples, usage. The Penn Treebank and Brown	
	Corpus. Probabilistic (weighted) finite state automata. Hidden	
	Markov models (HMMs), definition and use. Unsupervised	
	Language Discovery Automatically discovering verb sub	
	categorization	

11. Suggested Books:

SNO.	Name of Books / Authors	Year of
		Publication
1.	Speech and Language Processing Daniel Jurafsky, James H. Martin	2000
2.	Foundations of Statistical Natural Language Processing Christopher D. Manning, Hinrich Schütze	1999

Instructions for Question Paper:

RIMT UNIVERSITY

Computer Science and Engineering NAME OF DEPT.: Course Title: Cloud Computing 1. Subject Code: MTCS-151 2. Contact Hours: 40 L: 3 T: 1 P: 0 **Practical** 3. Examination Duration (Hrs.): **Theory** 3 0 **MTE** 24 ETE 4. Relative Weight: **CWA** 16 **LWA** 60 **EPE** 5. Credits: 6. Semester: 3 7. Pre-requisite:

- Subject Area: **Departmental Course (DC)** 8. 9. Course Objectives:

MTCS-151.1	Understand the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.
MTCS-151.2	Apply fundamental concepts in cloud infrastructures to understand the tradeoffs in power, efficiency and cost, and then study how to leverage and manage single and multiple data centers to build and deploy cloud applications that are resilient, elastic and cost-efficient
MTCS-151.3	Discuss system, network and storage virtualization and outline their role in enabling the cloud computing system model.
MTCS-151.4	Analyze various cloud managing mechanisms and cloud fundamental architectures

SI.No	Contents	Contact Hours
		Hours
1.	Unit-I	13
	Introduction and Evolution of Computing Paradigms: Overview of	
	Existing Hosting Platforms, Cluster Computing, Grid Computing, Utility	
	Computing, Autonomic Computing, mesh, Introduction to Cloud	
	Computing, Cloud Computing history and evolution, practical	
	applications of cloud computing for various industries, economics and	
	benefits of cloud computing. Cloud Issues and Challenges: Cloud	
	computing issues and challenges like Security, Elasticity, Resource	
	management and scheduling, QoS (Quality of Service) and Resource	
	Allocation, Cost Management, Big Data.	
2.	Unit-II	8
	Data Center: Classic Data Center, Virtualized Data Center (Compute,	
	Storage, Networking and Application), Business Continuity in VDC	
	Cloud Computing Architecture: Cloud Architecture model, Types of	
	Clouds: Public Private & Hybrid Clouds, Cloud based services: Iaas,	
	PaaS and SaaS.	
3.	Unit-III	14
	Classification of Cloud Implementations: Amazon Web Services, The	
	Elastic Compute Cloud (EC2), The Simple Storage Service (S3), The	
	Simple Queuing Services (SQS), Google AppEngine - PaaS, Windows	
	Azure, Aneka, A Comparison of Cloud Computing Platforms .	
	Classification of Cloud Implementations: Amazon Web Services, The	
	Elastic Compute Cloud (EC2), The Simple Storage Service (S3), The	
	Simple Queuing Services (SQS), Google AppEngine - PaaS, Windows	
	Azure, Aneka, A Comparison of Cloud Computing Platforms .	
	Virtualization: Virtualization, Advantages and disadvantages of	
	Virtualization, Types of Virtualization: Resource Virtualization i.e.	
	Server, Storage and Network virtualization, Migration of processes,	
	VMware vCloud – IaaS	
4.	Unit-IV	5
	Cloud based Data Storage: Introduction to Map Reduce for Simplified	
	data processing on Large clusters, Design of data applications based on	
	Map Reduce in Apache Hadoop, Task Partitioning, Data partitioning,	
	Data Synchronization, Distributed File system, Data Replication, Shared	
	access to weakly consistent to data stores, introduction to Python.	
	Total	40

^{11.} Suggested Books

SI.NO	Name of Books/Authors	Year of
		Publication
1	Raj Kumar Buyya, James Broberg, AndrezeiM.Goscinski, Cloud Computing: Principles and paradigms.	2011
2	Michael Miller, Cloud Computing, Que Publishing.	2008
3	Cloud Computing: A practical Approach Anthony Velte, Toby Velte and Robert Elsenpeter by Tata McGrawHill.	
4	Judith Hurwitz, Robin Bllor, Marcia Kaufman, Fern Halper, Cloud Computing for dummies.	2009

Instructions for Question Paper: