

Program Name: M.Tech Civil Engineering Program Code: CIV-401

## Scheme & Syllabus

### (Choice Based Credit System)

For

M.Tech Programme in Civil Engineering Specializations: Environmental Engineering, Highways & Transportation Engineering, Infrastructure Development & Management, Soil & Foundation Engineering, Structural Engineering

(Session2017-18)

**Program Code: CIV 401** 



DEPARTMENT OF CIVIL ENGINEERING SCHOOLOFENGINEERING

RIMT UNIVERSITY, MANDIGOBINDGARH, PUNJAB



#### TABLE OF CONTENTS

| S. No. | Content                                                                                                          | Page No. |
|--------|------------------------------------------------------------------------------------------------------------------|----------|
| 1      | Section 1: Vision and Mission of the University                                                                  |          |
| 2      | Section 2: Vision and Mission of the Department                                                                  |          |
| 3      | Section 3: About the Program                                                                                     |          |
| 4      | Section 4: Program Educational Objectives (PEOs), Program Outcomes<br>(POs) and Program Specific Outcomes (PSOs) |          |
| 5      | Section 5: Curriculum / Scheme with Examination Scheme                                                           |          |



# **Vision & Mission of the University**

#### VISION

• To become one of the most preferred learning places and a centre of excellence to promote and nurture future leaders who would facilitate the desired change in the society.

#### MISSION

- To impart teaching and learning through cutting-edge technologies supported by the world class infrastructure
- To empower and transform young minds into capable leaders and responsible citizens of India instilled with high ethical and moral values.
- To develop human potential to its fullest extent and make them emerge as world class leaders in their professions and enthuse them towards their social responsibilities.



# **Vision and Mission of the Department**

#### VISION

• Through excellence in technical education, research, and innovation become an internationally renowned technical department for human resource development.

#### MISSION

- Providing a scholarly atmosphere for Undergraduate, Post Graduate and Doctoral programmes while dissemination knowledge through leading edge research.
- Designing academic programmes and methods with dynamism, innovation, and flexibility.
- Engaging in joint initiatives with industry for the advancement and benefit of society.
- Creating morally competent, compassionate, and innovative world leaders.



# **About the Program**

M.Tech (Civil Engineering) or Master of Technology in Civil Engineering is a Post-Graduate Civil Engineering course. The Civil Engineering program encompasses tasks such as planning, overseeing, and constructing public works such as roads, bridges, tunnels, buildings, airports, dams, water works, sewage systems, ports, and so on, and provides a variety of difficult professional options.. This course basically provides students a platform with which they will be able to discover the extent to shape up the buildings, dams, roads, railways and repair the existing constructions to develop societies and cities. With the help of this course, students will be able to acquire knowledge which is very important to build and manage all the Civil related work.



Program Name: M.Tech Civil Engineering Program Code: CIV-401



# Program Educational Objectives (PEOs), Program

**Outcomes (POs) and Program Specific Outcomes (PSOs)** 

## **PROGRAMME EDUCATION OBJECTIVES (PEOs)**

**PEO1**To mould the students to become effective global science students in the competitive environment of modern society.

**PEO2** To provide students with strong foundation in contemporary practices of Science, different functional areas and scientific environment.

**PEO3** To develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders can emerge in range of professions.

**PEO4** To develop communication, analytical, decision-making, motivational, leadership, problem solving and human relations skills of the students.

**PEO5** To inculcate professional and ethical attitude in students.

**PEO6** To pursue lifelong learning as a means of enhancing knowledge and skills necessary to contribute to the betterment of profession



### **Program Outcome (POs)**

#### **M.Tech -Structural Engineering**

#### **Program Outcomes**

PO1 An ability to independently carry out research /investigation and development work to solve practical problems.

PO2 An ability to write and present a substantial technical report/document.

PO3 Students should be able to demonstrate a degree of mastery for designing and solving structural engineering problems.

PO4 An ability to use appropriate modern tools in structural engineering. In doing so he should demonstrate sufficient knowledge of competing tools and their relative merits and demerits.

PO5 An ability to demonstrate the traits of learning and unlearning throughout his professional career, and be willing to learn new techniques, methods and processes.

PO6 To impart practical knowledge to become a responsible engineer adhering to all established practices of his profession.

#### M.Tech – Soil & Foundation Engineering / Geotechnical Engineering

#### **Program Outcomes**

PO1 Independently carry out research/investigation and development work to solve practical problems.

- PO2 Write and present a substantial technical report/document.
- PO3 Demonstrate a degree of mastery over geotechnical engineering.
- PO4 Identify Engineering solutions to problematic soils and provide suitable foundation.
- PO5 Apply modern tools for designing geo technical structures.

PO6 Work in inter-disciplinary engineering teams with social responsibility and ethical values and pursue lifelong learning.

#### M.Tech – Highway and Transportation Engineering

#### **Program Outcomes**

PO1 To impart the knowledge of planning, design, construction, maintenance, up gradation, and operation of the highways/Transportation Infrastructure

PO2 To develop innovative capability among students using modern equipment's and latest software so as to inculcate in them the ability to participate in creative and integrative activities in their relevant branch.

PO3 To create research aptitude among the students in the field of transportation engineering and its interdisciplinary areas.

PO4 Students should be able to understand how to implement construction process using effective and efficient project planning tools



#### M.Tech – Environmental Engineering

#### **Program Outcomes**

PO1 To equip the students with capabilities required for identifying, formulating and management of environmental issues/problems.

PO2 To impart training to the students to prepare them for conducting high value research on environmental engineering and other related issues and also to pursue lifelong learning.

PO3 To introduce the students to the environmental problems at international, national and regional level so that they get exposure to the burning issues.

PO4 To impart training to the students to gain capabilities for conducting joint collaborating works.

#### **M.Tech – Infrastructure Planning**

#### **Program Outcomes**

PO1 To impart knowledge to students in the latest technological aspects of Infrastructure

projects and to provide them with opportunities in taking up advanced topics of the field of study.

**PO2** To mould the graduate civil engineers to undertake safe, economical and sustainable infrastructure projects.

PO3 Critically assess the relevant technological issues.

**PO4** Conduct experimental and/or analytical work and analyzing results using modern mathematical and scientific methods.

PO5 Formulate relevant research problems and critically assess research of their own and of others.



# **Program Specific Outcome (PSOs)**

**PSO 01**: Development of professional skills in the area of Structural Engineering, Water Resources Engineering, Transportation Engineering, Environmental Engineering, Geotechnical Engineering,

Geo-informatics & Remote sensing, and Construction techniques & management

**PSO 02:** Application of relevant aspects of mathematics in engineering analysis and design.

PSO 03: Refurbishing of technical communication skills

**PSO 04**: Application of these principles and practices to problems related to Civil Engineering and other allied technical & industrial fields.

**PSO 05:** Work as design consultants in construction industry for the design of civil engineering structures.



# **Curriculum / Scheme with Examination Grading Scheme**

### SEMESTER WISE SUMMARY OF THE PROGRAMME M.TECH (CIVIL ENGINEERING) (CIVIL

| S.No | Semester | No. of Contact Hours | Marks | Credits |
|------|----------|----------------------|-------|---------|
| 1    | Ι        | 16                   | 500   | 16      |
| 2    | II       | 20                   | 500   | 18      |
| 3    | III      | 12                   | 500   | 26      |
| 4    | IV       | 00                   | 100   | 20      |
|      | Total    | 48                   | 1600  | 80      |



#### **EXAMINATION GRADING SYSTEM**

| Marks<br>Percentage<br>Range | Grade                 | Grade Point | Qualitative<br>Meaning |
|------------------------------|-----------------------|-------------|------------------------|
| 80-100                       | 0                     | 10          | Outstanding            |
| 70-79                        | $\mathbf{A}^+$        | 9           | Excellent              |
| 60-69                        | Α                     | 8           | Very Good              |
| 55-59                        | <b>B</b> <sup>+</sup> | 7           | Good                   |
| 50-54                        | В                     | 6           | Above Average          |
| 45-49                        | С                     | 5           | Average                |
| 40-44                        | Р                     | 4           | Pass                   |
| 0-39                         | F                     | 0           | Fail                   |
| ABSENT                       | AB                    | 0           | Fail                   |

Percentage Calculation: CGPA\*10



Program Name: M.Tech Civil Engineering Program Code: CIV-401

#### **M.TECH STUDY SCHEME-ENVIRONMENTAL ENGINEERING**

Program :M. Tech. –Environmental EngineeringDepartment: Department of Civil EngineeringYear: 1stYear/1stSemester

Exam Contact **Teaching Scheme** Duration **Relative Weights (%)** Hours/Week (Hrs) Practical Total Subject Credits Subject Theory S.No Area **Course Title** L Т Р CWA LWA MTE EPE ETE Code **MTRM-101 Operation Research and Methodology** 1 4 3 1 3 16 24 60 100 MTCE-111 2 **Environmental Chemistry** 4 3 1 3 16 24 60 100 MTCE-1xx 3 **Elective-I** 3 3 16 24 60 4 1 100 **MTRM-102 ORM LAB** 4 2 100 4 100 **MTCE-181** 5 Seminar 2 100 100

| CWA: Class Work Assessment     | Elective-I                            |
|--------------------------------|---------------------------------------|
| LWA: Lab Work Assessment       | MTCE-149 Hydrology & Water Harvesting |
| MTE: Mid Term Examination      | MTCE-141 Disaster Management          |
| ETE :End Term Examination      |                                       |
| ETE: End Practical Examination |                                       |

Total Credits:16 Contact Hours: 16



# Program :M. Tech. -Environmental EngineeringDepartment: Department of Civil EngineeringYear: 1stYear/2ndSemester

Exam Contact **Teaching Scheme Relative Weights (%)** Duration Hours/Week (Hrs) Total Practical Subject Credits Theory Subject S.No Area **Course Title** L Т Р CWA LWA MTE ETE EPE Code MTCE-112 **Physics of Environment** 1 4 3 1 3 16 24 60 100 MTCE-113 2 Air pollution and control 4 3 1 3 16 24 60 100 MTCE-114 3 Industrial & Hazardous Waste 4 3 3 16 24 60 1 100 Management MTCE-115 4 **Unit Processes & Operations-I** 4 3 1 3 16 24 60 100 **MTCE-132** 5 Lab-2 (Advance Environment Lab) 2 100 4 100

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |
|                                |

Total Credits: 18 Contact Hours: 20



# Program :M. Tech. -Environmental EngineeringDepartment: Department of Civil EngineeringYear: 2<sup>nd</sup>Year/3<sup>rd</sup>Semester

|      | Teaching Scheme |                                | Contact<br>Hours/Week |         |   | Exam<br>Duration<br>(Hrs) |   | Relative Weights (%) |           |     |     |     |     |     |       |
|------|-----------------|--------------------------------|-----------------------|---------|---|---------------------------|---|----------------------|-----------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title                   | Subject<br>Area       | Credits | L | Т                         | Р | Theory               | Practical | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-116        | Unit Processes & Operations-II |                       | 4       | 3 | 1                         |   | 3                    |           | 16  |     | 24  | 60  |     | 100   |
| 2    | MTCE-1xx        | Elective-II                    |                       | 4       | 3 | 1                         |   | 3                    |           | 16  |     | 24  | 60  |     | 100   |
| 3    | MTCE-1xx        | Elective-III                   |                       | 4       | 3 | 1                         |   | 3                    |           | 16  |     | 24  | 60  |     | 100   |
| 4    | MTCE-183        | Project                        |                       | 10      |   |                           |   |                      |           |     | 100 |     |     |     | 100   |
| 5    | MTCE-182        | Pre-thesis Seminar             |                       | 4       |   |                           |   |                      |           |     | 100 |     |     |     | 100   |

| CWA: Class Work Assessment     | Elective-II                                |
|--------------------------------|--------------------------------------------|
| LWA: Lab Work Assessment       | MTCE-142 Construction and maintenance Mgt. |
| MTE: Mid Term Examination      | MTCE-150 Energy through Water Utilization  |
| ETE :End Term Examination      | Elective–III                               |
| ETE: End Practical Examination | MTCE-151 Environmental Standards & Laws    |
|                                | MTCE-145 Composite Materials               |

Total Credits: 26 Contact Hours: 12



# Program :M. Tech. -Environmental EngineeringDepartment: Department of Civil EngineeringYear: 2<sup>nd</sup>Year/4<sup>th</sup>Semester

Total Credits: 20 Contact Hours: 00

|      | Teaching Scheme |              | Contact<br>Hours/Week |         | Exam<br>Duration<br>(Hrs) |   | Relative Weights (%) |        |           |     |     |     |     |     |       |
|------|-----------------|--------------|-----------------------|---------|---------------------------|---|----------------------|--------|-----------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title | Subject<br>Area       | Credits | L                         | Т | Р                    | Theory | Practical | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-190        | Thesis       |                       | 20      |                           |   |                      |        |           |     |     |     |     | 100 | 100   |

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |



#### **M.TECH STUDY SCHEME-HIGHWAYS & TRANSPORTATION ENGINEERING**

**Program :** M. Tech. –Highways & Transportation Engineering

Department : Department of Civil Engineering Year : 1<sup>st</sup>Year/1<sup>st</sup>Semester

|      | Teaching Scheme |                                    | Contact<br>Hours/Week |         |   | Exam<br>Duration<br>(Hrs) |   | Relative Weights (%) |           |     |     |     |     |     |       |
|------|-----------------|------------------------------------|-----------------------|---------|---|---------------------------|---|----------------------|-----------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title                       | Subject<br>Area       | Credits | L | Т                         | Р | Theory               | Practical | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTRM-101        | Operation Research and Methodology |                       | 4       | 3 | 1                         |   | 3                    |           | 16  |     | 24  | 60  |     | 100   |
| 2    | MTCE-101        | Bridge Engineering                 |                       | 4       | 3 | 1                         |   | 3                    |           | 16  |     | 24  | 60  |     | 100   |
| 3    | MTCE-1XX        | Elective-I                         |                       | 4       | 3 | 1                         |   | 3                    |           | 16  |     | 24  | 60  |     | 100   |
| 4    | MTRM-102        | ORM LAB                            |                       | 2       |   |                           | 4 |                      |           |     | 100 |     |     |     | 100   |
| 5    | MTCE-181        | Seminar                            |                       | 2       |   |                           |   |                      |           | 100 |     |     |     |     | 100   |

| CWA: Class Work Assessment     | Elective-I                                             |
|--------------------------------|--------------------------------------------------------|
| LWA: Lab Work Assessment       | MTCE-146 Land use and Regional Transportation Planning |
| MTE: Mid Term Examination      | MTCE-141 Disaster Management                           |
| ETE :End Term Examination      |                                                        |
| ETE: End Practical Examination |                                                        |

**Total Credits:16 Contact Hours:16** 



### Program : M. Tech. -Highways & Transportation Engineering **Department** : **Department** of **Civil Engineering**

TotalCredits:18 ContactHours:20

Year : 1<sup>st</sup>Year/2<sup>nd</sup>Semester

|         | Teaching Scheme |                                                      |                 |         | Contact<br>Hours/Week |   |   | Exam<br>Duration<br>(Hrs) |           | R   |     |     |     |     |       |
|---------|-----------------|------------------------------------------------------|-----------------|---------|-----------------------|---|---|---------------------------|-----------|-----|-----|-----|-----|-----|-------|
| $S.N_0$ | Subject<br>Code | Course Title                                         | Subject<br>Area | Credits | L                     | Т | Р | Theory                    | Practical | CWA | LWA | MTE | ETE | EPE | Total |
| 1       | MTCE-107        | Advanced Traffic Engineering                         |                 | 4       | 3                     | 1 |   | 3                         |           | 16  |     | 24  | 60  |     | 100   |
| 2       | MTCE-108        | Geometric Design of Transportation<br>Infrastructure |                 | 4       | 3                     | 1 |   | 3                         |           | 16  |     | 24  | 60  |     | 100   |
| 3       | MTCE-109        | Pavement Material Characterization                   |                 | 4       | 3                     | 1 |   | 3                         |           | 16  |     | 24  | 60  |     | 100   |
| 4       | MTCE-110        | Pavement Analysis and Design                         |                 | 4       | 3                     | 1 |   | 3                         |           | 16  |     | 24  | 60  |     | 100   |
| 5       | MTCE-131        | Advance Material Testing lab                         |                 | 2       |                       |   | 4 |                           |           |     | 100 |     |     |     | 100   |

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |
|                                |



#### **Program :** M. Tech. -Highways & Transportation Engineering Department : Department of Civil Engineering

Year

: 2<sup>nd</sup>Year/3<sup>rd</sup>Semester

Exam Contact **Teaching Scheme** Duration **Relative Weights (%)** Hours/Week (Hrs) Total Subject Practical Credits Theory Subject S.No Area L **Course Title** Т Р CWA LWA MTE ETE EPE Code **MTCE-106 Advanced Foundation Engineering** 1 4 3 1 3 16 24 60 100 MTCE-1XX **Elective-II** 2 24 3 3 16 60 4 1 100 MTCE-1XX Elective-III 3 1 3 16 24 60 4 3 100 **MTCE-183** Project 4 10 100 100 5 **MTCE-182 Pre-thesis Seminar** 100 4 100

| CWA: Class Work Assessment     | Elective-II                                            |
|--------------------------------|--------------------------------------------------------|
| LWA: Lab Work Assessment       | MTCE-142 Construction and maintenance Mgt.             |
| MTE: Mid Term Examination      | MTCE-147 Pavement Management System                    |
| ETE :End Term Examination      | Elective–III                                           |
| ETE: End Practical Examination | MTCE-148 Transportation system planning and management |
|                                | MTCE-145 Composite Materials                           |

**Total Credits: 26 Contact Hours: 12** 



# Program :M. Tech. -Highways & Transportation EngineeringDepartment: Department of Civil EngineeringYear: 2<sup>nd</sup>Year/4<sup>th</sup>Semester

Total Credits: 20 Contact Hours: 00

|      | Teaching Scheme |              |                 |         | Contae<br>1175/W |   | Dura | am<br>ation<br>rs) | R         |     |     |     |     |     |       |
|------|-----------------|--------------|-----------------|---------|------------------|---|------|--------------------|-----------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title | Subject<br>Area | Credits | L                | Т | Р    | Theory             | Practical | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-190        | Thesis       |                 | 20      |                  |   |      |                    |           |     |     |     |     | 100 | 100   |

| CWA: Class Work Assessment     |  |
|--------------------------------|--|
| LWA: Lab Work Assessment       |  |
| MTE: Mid Term Examination      |  |
| ETE :End Term Examination      |  |
| ETE: End Practical Examination |  |



#### **M.TECH STUDY SCHEME-INFRASTRUCTURE DEVELOPMENT & MANAGEMENT**

Program: M.Tech.–Infrastructure Development & Management

Department : Department of Civil Engineering

Year : 1<sup>st</sup>Year/1<sup>st</sup>Semester

|      | Teaching Scheme |                                           |                 |         |   | Contact<br>Hours/Week |   |        | Exam<br>Duration<br>(Hrs) |     | Relative Weights (%) |     |     |     |       |  |
|------|-----------------|-------------------------------------------|-----------------|---------|---|-----------------------|---|--------|---------------------------|-----|----------------------|-----|-----|-----|-------|--|
| S.No | Subject<br>Code | Course Title                              | Subject<br>Area | Credits | L | Т                     | Р | Theory | Practical                 | CWA | LWA                  | MTE | ETE | EPE | Total |  |
| 1    | MTRM-101        | <b>Operation Research and Methodology</b> |                 | 4       | 3 | 1                     |   | 3      |                           | 16  |                      | 24  | 60  |     | 100   |  |
| 2    | MTCE-117        | Principles and Practices of Management    |                 | 4       | 3 | 1                     |   | 3      |                           | 16  |                      | 24  | 60  |     | 100   |  |
| 3    | MTCE-1xx        | Elective-I                                |                 | 4       | 3 | 1                     |   | 3      |                           | 16  |                      | 24  | 60  |     | 100   |  |
| 4    | MTRM-102        | ORM LAB                                   |                 | 2       |   |                       | 4 |        |                           |     | 100                  |     |     |     | 100   |  |
| 5    | MTCE-181        | Seminar                                   |                 | 2       |   |                       |   |        |                           | 100 |                      |     |     |     | 100   |  |

| CWA: Class Work Assessment     | Elective-I                          |
|--------------------------------|-------------------------------------|
| LWA: Lab Work Assessment       | MTCE-152 Management in Organization |
| MTE: Mid Term Examination      | MTCE-141 Disaster Management        |
| ETE :End Term Examination      |                                     |
| ETE: End Practical Examination |                                     |

Total Credits: 16 Contact Hours: 16



#### **Program :** M.Tech.-Infrastructure Development & Management Department :Department of Civil Engineering

Year :1<sup>st</sup>Year/2<sup>nd</sup>Semester

|      | Teaching Scheme |                                                   |                 |         | Contact<br>Hours/Week |   |   | Dura   | am<br>ation<br>rs) | R   | %)  |     |     |     |       |
|------|-----------------|---------------------------------------------------|-----------------|---------|-----------------------|---|---|--------|--------------------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title                                      | Subject<br>Area | Credits | L                     | Т | Р | Theory | Practical          | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-118        | Materials and Equipment Management                |                 | 4       | 3                     | 1 |   | 3      |                    | 16  |     | 24  | 60  |     | 100   |
| 2    | MTCE-119        | Infrastructure Development and         Management |                 | 4       | 3                     | 1 |   | 3      |                    | 16  |     | 24  | 60  |     | 100   |
| 3    | MTCE-120        | Project Management Systems and<br>Techniques      |                 | 4       | 3                     | 1 |   | 3      |                    | 16  |     | 24  | 60  |     | 100   |
| 4    | MTCE-121        | Quality, Safety and Environment<br>Management     |                 | 4       | 3                     | 1 |   | 3      |                    | 16  |     | 24  | 60  |     | 100   |
| 5    | MTCE-131        | Advance Material Testing lab                      |                 | 2       |                       |   | 4 |        |                    |     | 100 |     |     |     | 100   |

| CWA: Class Work Assessment     |  |
|--------------------------------|--|
| LWA: Lab Work Assessment       |  |
| MTE: Mid Term Examination      |  |
| ETE :End Term Examination      |  |
| ETE: End Practical Examination |  |

Total Credits:18 Contact Hours:20



#### Program : M.Tech.-Infrastructure Development & Management

**Department** : Department of Civil Engineering

Year : 2ndYear/3<sup>rd</sup>Semester

Exam Contact **Teaching Scheme Relative Weights (%)** Duration Hours/Week (Hrs) Total Practical Subject Credits Theory Subject S.No Area **Course Title** L Т Р CWA LWA MTE ETE EPE Code **MTCE-122** 1 **Contracts Management** 4 3 16 24 60 100 1 3 MTCE-1xx **Elective-II** 2 4 3 1 3 16 24 60 100 3 MTCE-1xx Elective-III 3 3 16 24 60 4 1 100 **MTCE-183** Project 4 10 100 100 **MTCE-182** 5 **Pre-thesis Seminar** 4 100 100

| CWA: Class Work Assessment     | Elective-II                                                              |
|--------------------------------|--------------------------------------------------------------------------|
| LWA: Lab Work Assessment       | MTCE-142 Construction and maintenance Mgt.                               |
| MTE: Mid Term Examination      | MTCE-153 Construction Finance Management                                 |
| ETE :End Term Examination      | Elective–III                                                             |
| ETE: End Practical Examination | MTCE-154 Joint Ventures And Privatization In Infrastructures<br>Projects |
|                                | MTCE-145 Composite Materials                                             |

Total Credits:26 Contact Hours: 12



# Program : M.Tech.-Infrastructure Development & Management

**Department** : **Department** of Civil Engineering

Year : 2ndYear/4<sup>th</sup>Semester

|      | Teaching Scheme |              |                 |         |   | Contac<br>1rs/W |   | Ex<br>Dura<br>(H | ation     | Relative Weights (%) |     |     |     |     |       |
|------|-----------------|--------------|-----------------|---------|---|-----------------|---|------------------|-----------|----------------------|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title | Subject<br>Area | Credits | L | Т               | Р | Theory           | Practical | CWA                  | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-190        | Thesis       |                 | 20      |   |                 |   |                  |           |                      |     |     |     | 100 | 100   |

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |

Total Credits:20 Contact Hours:00



Program Name: M.Tech Civil Engineering Program Code: CIV-401

#### **M.TECH STUDY SCHEME-SOIL & FOUNDATION ENGINEERING**

Program : M.Tech. –Soil & Foundation Engineering

**Department** : **Department** of **Civil Engineering** 

Year : 1stYear/1<sup>st</sup>Semester

|      | Teaching Scheme |                                           |                 |         |   | Contact<br>Hours/Week |   |        | Exam<br>Duration<br>(Hrs) |     | Relative Weights (%) |     |     |     |       |  |
|------|-----------------|-------------------------------------------|-----------------|---------|---|-----------------------|---|--------|---------------------------|-----|----------------------|-----|-----|-----|-------|--|
| S.No | Subject<br>Code | Course Title                              | Subject<br>Area | Credits | L | Т                     | Р | Theory | Practical                 | CWA | LWA                  | MTE | ETE | EPE | Total |  |
| 1    | MTRM-101        | <b>Operation Research and Methodology</b> |                 | 4       | 3 | 1                     |   | 3      |                           | 16  |                      | 24  | 60  |     | 100   |  |
| 2    | MTCE-123        | Advance Soil Mechanics                    |                 | 4       | 3 | 1                     |   | 3      |                           | 16  |                      | 24  | 60  |     | 100   |  |
| 3    | MTCE-1xx        | Elective-I                                |                 | 4       | 3 | 1                     |   | 3      |                           | 16  |                      | 24  | 60  |     | 100   |  |
| 4    | MTRM-102        | ORM Lab                                   |                 | 2       |   |                       | 4 |        |                           |     | 100                  |     |     |     | 100   |  |
| 5    | MTCE-181        | Seminar                                   |                 | 2       |   |                       |   |        |                           | 100 |                      |     |     |     | 100   |  |

| CWA: Class Work Assessment     | Elective-I                   |
|--------------------------------|------------------------------|
| LWA: Lab Work Assessment       | MTCE-158 Rock Mechanics      |
| MTE: Mid Term Examination      | MTCE-141 Disaster Management |
| ETE :End Term Examination      |                              |
| ETE: End Practical Examination |                              |

Total Credits: 16 Contact Hours: 16



#### **Program :** M.Tech. –Soil & Foundation Engineering **Department** : **Department** of Civil Engineering Y

**Total Credits: 18 Contact Hours: 20** 

| -    | <b>A</b>                           |
|------|------------------------------------|
| Year | : 1stYear/2 <sup>nd</sup> Semester |

|      | Teaching Scheme |                                      |                 |         | Contact<br>Hours/Week |   |   | Exam<br>Duration<br>(Hrs) |           | Relative Weights (%) |     |     |     |     |       |
|------|-----------------|--------------------------------------|-----------------|---------|-----------------------|---|---|---------------------------|-----------|----------------------|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title                         | Subject<br>Area | Credits | L                     | Т | Р | Theory                    | Practical | CWA                  | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-124        | Ground Improvement Techniques        |                 | 4       | 3                     | 1 |   | 3                         |           | 16                   |     | 24  | 60  |     | 100   |
| 2    | MTCE-125        | Sub-Surface geophysical methods      |                 | 4       | 3                     | 1 |   | 3                         |           | 16                   |     | 24  | 60  |     | 100   |
| 3    | MTCE-126        | Soil Dynamics and Machine Foundation |                 | 4       | 3                     | 1 |   | 3                         |           | 16                   |     | 24  | 60  |     | 100   |
| 4    | MTCE-127        | Design of Road Pavements             |                 | 4       | 3                     | 1 |   | 3                         |           | 16                   |     | 24  | 60  |     | 100   |
| 5    | мтсе-133        | Advance Soil Testing Lab             |                 | 2       |                       |   | 4 |                           |           |                      | 100 |     |     |     | 100   |

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |



## **Program : M.Tech. – Soil & Foundation Engineering Department** : **Department** of Civil Engineering

**Total Credits: 26 Contact Hours:12** 

Year : 2ndYear/3<sup>rd</sup>Semester

|      | Teaching Scheme |                                 |                 | Contact<br>Hours/Week |   |   | Ex<br>Dura<br>(H |        | Relative Weights (%) |     |     |     |      |     |       |
|------|-----------------|---------------------------------|-----------------|-----------------------|---|---|------------------|--------|----------------------|-----|-----|-----|------|-----|-------|
| S.No | Subject<br>Code | Course Title                    | Subject<br>Area | Credits               | L | Т | Р                | Theory | Practical            | CWA | LWA | MTE | ETTE | EPE | Total |
| 1    | MTCE-106        | Advanced Foundation Engineering |                 | 4                     | 3 | 1 |                  | 3      |                      | 16  |     | 24  | 60   |     | 100   |
| 2    | MTCE-1xx        | Elective-II                     |                 | 4                     | 3 | 1 |                  | 3      |                      | 16  |     | 24  | 60   |     | 100   |
| 3    | MTCE-1xx        | Elective-III                    |                 | 4                     | 3 | 1 |                  | 3      |                      | 16  |     | 24  | 60   |     | 100   |
| 4    | MTCE-183        | Project                         |                 | 10                    |   |   |                  |        |                      |     | 100 |     |      |     | 100   |
| 5    | MTCE-182        | Pre-thesis Seminar              |                 | 4                     |   |   |                  |        |                      |     | 100 |     |      |     | 100   |

| CWA: Class Work Assessment     | Elective-II                            |
|--------------------------------|----------------------------------------|
| LWA: Lab Work Assessment       | MTCE-155 Earthen Embankment            |
| MTE: Mid Term Examination      | MTCE-143 Computer Aided design methods |
| ETE :End Term Examination      | Elective–III                           |
| ETE: End Practical Examination | MTCE-156 Applied Soil Mechanics        |
|                                | MTCE-157 Environment Impact Assessment |



### Program : M.Tech. –Soil & Foundation Engineering Department : Department of Civil Engineering

Year : 2ndYear/4<sup>th</sup>Semester

Total Credits: 20 Contact Hours:00

|      | Teaching Scheme |              |                 |         | Contae<br>1rs/W |   | Ex<br>Dura<br>(H | Relative Weights (%) |           |     |     |     |     |     |       |
|------|-----------------|--------------|-----------------|---------|-----------------|---|------------------|----------------------|-----------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title | Subject<br>Area | Credits | L               | Т | Р                | Theory               | Practical | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-190        | Thesis       |                 | 20      |                 |   |                  |                      |           |     |     |     |     | 100 | 100   |

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |



Program Name: M.Tech Civil Engineering Program Code: CIV-401

#### M.TECH STUDY SCHEME-STRUCTURAL ENGINEERING

Program :M.Tech.-Structural EngineeringDepartment: Department of Civil EngineeringYear: 1stYear/1stSemester

|      | Teaching Scheme |                                    |                 | Contact<br>Hours/Week |   |   | Exam<br>Duration<br>(Hrs) |        | Relative Weights (%) |     |     |     |     |     |       |
|------|-----------------|------------------------------------|-----------------|-----------------------|---|---|---------------------------|--------|----------------------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title                       | Subject<br>Area | Credits               | L | Т | Р                         | Theory | Practical            | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTRM-101        | Operation Research and Methodology |                 | 4                     | 3 | 1 |                           | 3      |                      | 16  |     | 24  | 60  |     | 100   |
| 2    | MTCE-101        | Bridge Engineering                 |                 | 4                     | 3 | 1 |                           | 3      |                      | 16  |     | 24  | 60  |     | 100   |
| 3    | MTCE-1XX        | Elective-I                         |                 | 4                     | 3 | 1 |                           | 3      |                      | 16  |     | 24  | 60  |     | 100   |
| 4    | MTRM-102        | ORM LAB                            |                 | 2                     |   |   | 4                         |        |                      |     | 100 |     |     |     | 100   |
| 5    | MTCE-181        | Seminar                            |                 | 2                     |   |   |                           |        |                      | 100 |     |     |     |     | 100   |

| CWA: Class Work Assessment     | Elective-I                   |
|--------------------------------|------------------------------|
| LWA: Lab Work Assessment       | MTCE-140 Solid Mechanics     |
| MTE: Mid Term Examination      | MTCE-141 Disaster Management |
| ETE :End Term Examination      |                              |
| ETE: End Practical Examination |                              |

TotalCredits:16 ContactHours: 16



Subject

Code

**MTCE-102** 

**MTCE-103** 

**MTCE-104** 

**MTCE-105** 

MTCE-131

S.No

1

2

3

4

5

# Program :M.Tech.-Structural EngineeringDepartment: Department of Civil EngineeringYear: 1stYear/2<sup>nd</sup>Semester

Exam Contact **Teaching Scheme Relative Weights (%)** Duration Hours/Week (Hrs) Total Practical Subject Credits Theory Area **Course Title** L Т Р CWA LWA MTE ETE EPE **Dynamics of Structures** 4 3 1 3 16 24 60 100 **Prestressed Concrete structures** 4 3 1 3 16 24 60 100 **Advanced Structural Analysis** 24 4 3 1 3 16 60 100

3

4

2

1

4

3

16

24

100

60

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |

Plastic Analysis and design of steel Structures

**Advance Material Testing Lab** 

100

100



#### Program : M.Tech.-Structural Engineering Department : Department of Civil Engineering Year : 2ndYear/3<sup>rd</sup>Semester

Exam Contact **Teaching Scheme Relative Weights (%)** Duration Hours/Week (Hrs) Total Practical Subject Credits Theory Subject S.No Area **Course Title** L Т Р CWA LWA MTE ETE EPE Code **MTCE-106 Advanced Foundation Engineering** 1 3 16 24 60 100 4 1 3 MTCE-1XX 2 **Elective-II** 3 3 16 24 60 4 1 100 MTCE-1XX 3 Elective-III 4 3 1 3 16 24 60 100 **MTCE-183** Project 4 10 100 100 **MTCE-182** 5 **Pre-thesis Seminar** 4 100 100

| CWA: Class Work Assessment     | Elective-II                                |
|--------------------------------|--------------------------------------------|
| LWA: Lab Work Assessment       | MTCE-142 Construction and maintenance Mgt. |
| MTE: Mid Term Examination      | MTCE-143 Computer Aided design methods     |
| ETE :End Term Examination      | Elective–III                               |
| ETE: End Practical Examination | MTCE-144 High Rise Buildings               |
|                                | MTCE-145 Composite Materials               |

Total Credits:26 Contact Hours:12



# Program :M.Tech.-Structural EngineeringDepartment: Department of Civil EngineeringYear: 2<sup>nd</sup>Year/4<sup>th</sup>Semester

Total Credits:20 Contact Hours: 00

|      | Teaching Scheme |              |                 |         | ontact<br>rs/Week Exam<br>(Hrs) Relative Weights (%) |   | %) |        |           |     |     |     |     |     |       |
|------|-----------------|--------------|-----------------|---------|------------------------------------------------------|---|----|--------|-----------|-----|-----|-----|-----|-----|-------|
| S.No | Subject<br>Code | Course Title | Subject<br>Area | Credits | L                                                    | Т | Р  | Theory | Practical | CWA | LWA | MTE | ETE | EPE | Total |
| 1    | MTCE-190        | Thesis       |                 | 20      |                                                      |   |    |        |           |     |     |     |     | 100 | 100   |

| CWA: Class Work Assessment     |
|--------------------------------|
| LWA: Lab Work Assessment       |
| MTE: Mid Term Examination      |
| ETE :End Term Examination      |
| ETE: End Practical Examination |



#### SUBJECT TITLE: OPERATION RESEARCH AND METHODOLOGY

SUBJECT CODE: MTRM-101 SEMESTER: I/I CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 4          | 0           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

Operation research is a scientific method of providing executive departments with a quantities basis for decisions regarding the operations under their control".

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                   | Contact |
|-------------|----------------------------------------------------------------------------|---------|
|             |                                                                            | Hours   |
| SECTION-I   | Introduction to Research: Meaning, Definition, Objective and Process       | 10      |
|             | Research Design: Meaning, Types - Historical, Descriptive, Exploratory and |         |
|             | Experimental Research Problem: Necessity of Defined Problem, Problem       |         |
|             | Formulation, Understanding of Problem, Review of Literature Design of      |         |
|             | Experiment: Basic Principal of Experimental Design, Randomized Block,      |         |
|             | Completely Randomized Block, Latin Square, And Factorial Design.           |         |
|             | Hypothesis: Types, Formulation of Hypothesis, Feasibility, Preparation and |         |
|             | Presentation of Research Proposal                                          |         |
| SECTION-II  | Sources of Data: Primary and Secondary, Validation of Data Data Collection | 8       |
|             | Methods: Questionnaire Designing, Construction Sampling Design &           |         |
|             | Techniques – Probability Sampling and Non Probability Sampling Scaling     |         |
|             | Techniques: Meaning & Types Reliability: Test - Retest Reliability,        |         |
|             | Alternative Form Reliability, Internal Comparison Reliability and Scorer   |         |
|             | Reliability Validity: Content Validity, Criterion Related Validity and     |         |
|             | Construct Validity                                                         |         |
| SECTION-III | Data Process Operations: Editing, Sorting, Coding, Classification and      | 12      |
|             | Tabulation Analysis of Data: Statistical Measure and Their Significance,   |         |
|             | Central Tendency, Dispersion, Correlation: Linear and Partial, Regression: |         |
|             | Simple and Multiple Regression, Skewness, Time series Analysis, Index      |         |
|             | Number Testing of Hypothesis: T-test, Z- test, Chi Square, F-test, ANOVA   |         |
| SECTION-IV  | Multivariate Analysis: Factor Analysis, Discriminant Analysis, Cluster     | 10      |
|             | Analysis, Conjoint Analysis, Multi Dimensional Scaling Report Writing:     |         |
|             | Essentials of Report Writing, Report Format                                |         |

#### **Course Outcome:**

| CO1 | Operation research provide tools to problems involving the operations of systems so as provide     |
|-----|----------------------------------------------------------------------------------------------------|
|     | those in control of the operation with optimum solution to the problems.                           |
| CO2 | Operation research is concerned with scientifically deciding how best to design and operate man    |
|     | machine systems usually under conditions requiring the allocation of & care resources.             |
| CO3 | Operation research is an aid for the executive in making his decisions by providing him with the   |
|     | needed quantitative information based on the scientific method of analysis.                        |
| CO4 | Operation research in the most general sense can be characterized as the application of scientific |
|     | methods techniques                                                                                 |



#### **Recommended Books:**

- 1. R.I Levin and D.S. Rubin, 'Statistics for Management', 7thEdition, 2013.
- N.K.Malhotra, 'Marketing Research–An Applied Orientation', 6<sup>th</sup> Edition, 2010.
   C.R.Kothari, 'Research Methodology Methods & Techniques', 2<sup>nd</sup> Edition, 2014.



#### SUBJECT TITLE: ORM LAB SUBJECT CODE: MTRM-102 SEMESTER:I/I CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |  |  |
|------------|-------------|---------------------|-----------|--|--|
| 0          | 0           | 4                   | 2         |  |  |

**Internal Assessment: 100** 

#### Objective

To understand the limitations of particular research methods. Develop skills in qualitative and quantitative data analysis and presentation

#### Contents of Syllabus:

| Contents                                                                                                                                                                                                                                                                                                                                                     | Contact<br>Hours |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Statistical Software: Application of Statistical Softwares like SPSS, MS Excel, Mini Tab or<br>MATLAB Software in Data Analysis *Each Student has to Prepare Mini Research Project<br>on Topic/ Area of their Choice and Make Presentation. The Report Should Consist of<br>Applications of Tests and Techniques Mentioned in The Research Methodology UNITs | 40               |

#### **Course Outcome:**

| CO1 | Demonstrate the ability to choose methods appropriate to research aims and objectives        |  |
|-----|----------------------------------------------------------------------------------------------|--|
| CO2 | Understand the limitations of particular research methods. Develop skills in qualitative and |  |
|     | quantitative data analysis and presentation                                                  |  |
| CO3 | Develop advanced critical thinking skills.                                                   |  |
| CO4 | Assess the basic function and working of analytical instruments used in research             |  |

#### **Suggested Books**

R.I Levin and D.S. Rubin, 'Statistics for Management', 7<sup>th</sup>Edition, 2013.
 N.K.Malhotra, 'Marketing Research–An Applied Orientation', 6<sup>th</sup> Edition, 2010.
 C.R.Kothari, 'Research Methodology Methods & Techniques', 2<sup>nd</sup> Edition, 2014.



**Program Name: M.Tech Civil Engineering** 

Program Code: CIV-401

SUBJECT TITLE: BRIDGE ENGINEERING SUBJECT CODE: MTCE-101 SEMESTER:I

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |  |
|------------|-------------|---------------------|-----------|--|
| 3          | 1           | 0                   | 4         |  |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

The main aim of this course is to enable students to choose the appropriate bridge type for a given project, and to analyses and design the main components of the chosen bridge.

#### **Contents of Syllabus:**

**CONTACTHOURS/WEEK:** 

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                             | Contact<br>Hours |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | General:-Bridge System, Considerations in alignment, Planning, Economic<br>Consideration, Aesthetics and selection of type of bridge (Review).<br>LoadingStandards:- Standards followed in India, U.K., U.S.A. and Europe                                                                                                            | 8                |
| SECTION-II  | Super Structure Analysis: Bridge deck analysis using different methods, Load distribution theories Courbon specifications for loading, Geometrical proportioning etc. of road, rail-cum-road bridges. Indian Road Congress (IRC) and Indian Railway Loading standards                                                                | 10               |
| SECTION-III | Connections: Design of different connections, Bearings and joints.<br>Substructure Analysis and Design: Piers, Abutments, Wing walls and other<br>appurtenant structures. Foundations: Well foundations and pile foundation,<br>Design and construction and field problems                                                           | 8                |
| SECTION-IV  | Construction & Maintenance: Erection of bridge super structure,<br>Maintenance, Rating and Strengthening of existing bridges. Dynamics<br>Behavior of bridges Discussion of code provisions for design of bridges for<br>wind and earthquake forces. Long Span Bridges: General discussion of<br>suspension and cable stayed bridges | 10               |

#### Course Outcome:

| CO1 | Understand the concept of planning and investigation for bridges    |  |
|-----|---------------------------------------------------------------------|--|
| CO2 | Analyze and design superstructures for various types of rcc bridges |  |
| CO3 | Analyze and design various types of substructures and foundations   |  |
| CO4 | Design and check the stability of piers and abutments               |  |

#### **Recommended Books:**

- 1. Essentials of Bridge Engineering6<sup>th</sup>editionPublication2016
- 2. Rangwala, S.C., "BridgeEngineering", CharotarPublishingHousePvt.Ltd. 2009
- 3. Ponnuswamy, S."BridgeEngineering", McGrawHillEducation. 2010



#### Program Name: M.Tech Civil Engineering Program Code: CIV-401

SUBJECT TITLE: DYNAMICS OF STRUCTURES

#### SUBJECT CODE:MTCE-102 SEMESTER:II

**CONTACTHOURS/WEEK:** 

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

The objective is to provide the fundamental understanding of the structural dynamics and the problem solving ability for dynamic response in civil engineering design, analysis and research.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                            | Contact |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|             |                                                                                                                                                                                                                                                                                                                     | Hours   |
| SECTION-I   | Single Degree of Freedom Systems: Fundamental, Mass spring damper<br>system, Analysis of free vibrations, Response to harmonic loading, periodic<br>loading, Impulsive loading and general dynamic loading. Generalized SDOF,<br>Vibration analysis by Rayleigh method                                              | 8       |
| SECTION-II  | Multi Degree of Freedom Systems: Two degree of freedom system<br>undamped, free & forced. And Multidegree of freedom system, Hozler's<br>method, Stodola's method, Orthogonality condition, Damped system.<br>Dynamic analysis and Response- Modal Analysis, Response spectrum<br>analysis, Rayleigh's- Ritz method | 10      |
| SECTION-III | Structures with Distributed Mass And Load: Axial, shear and transverse vibration due to bending of beams, Uniform shear beam, Beam in bending, Numerical techniques for shear beam, Bending of beams, Forced vibration, Plates or slabs subjected to normal loads                                                   | 12      |
| SECTION-IV  |                                                                                                                                                                                                                                                                                                                     | 8       |

#### **Course Outcome:**

| CO1 | Establishing dynamic equilibrium, the equation of motion                            |
|-----|-------------------------------------------------------------------------------------|
| CO2 | Continuous systems and partial differential equations for rods and beams.           |
| CO3 | Modeling of structural damping.                                                     |
| CO4 | Solve problem on earthquake steeping loading by Cauchy Euler and Trapezoidal method |

- 1. Elementary Earthquake Engineering by Jai Krishna & Chander Shekhran, 2010
- 2. DynamicsofStructures:TheoryandApplicationstoEarthquakeEngineering'A.K.Chopra'2016
- 3. Dynamicsofstructures, Damodrasamy, s. kavitha, revised edition 2016



# SUBJECT TITLE: PRESTRESSED CONCRETE STRUCTURESSUBJECT CODE:MTCE-103SEMESTER:IICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)31

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

**Objective:** - To understand the basic aspects of prestressed concrete

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                     | Contact |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|             |                                                                                                                                                                                                                                                                                              | Hours   |
| SECTION-I   | Limit state design of statically determinate pre-stressed beams- limit state of collapse by flexure, shear, and torsion limit state of serviceability Anchorage zone stresses for posttensioned members. Statically indeterminate structures-analysis and design-continuous beams and frames | 13      |
| SECTION-II  | Choice of profile, linear transformation, concordance, omically viable profile.<br>Composite beam with precast prestressed beams and cast in situ RC slab-<br>analysis and design.                                                                                                           | 8       |
| SECTION-III | Time dependent effects such as creep, shrinkage etc. on composite<br>construction inclusive of creep relaxation and relaxation creep-partial<br>prestressing principles, analysis and design of simple beams, crack and crack<br>width calculations                                          | 9       |
| SECTION-IV  | Analysis and design of prestressed pipes, tanks and spatial structures slabs, grids, folded plates and shells                                                                                                                                                                                | 8       |

#### **Course Outcome:**

| CO1 | Understand the basic aspects of prestressed concrete |
|-----|------------------------------------------------------|
| CO2 | To design prestressed concrete beam                  |
| CO3 | To design prestressed composite beams                |
| CO4 | To design flexural members with partial prestressing |

- 1. Design of Prestressed Concrete Raymond Ian Gilbert, Neil Colin Mickleborough, Gianluca Ranzi,2017
- 2. Prestressedconcrete-T.Y.Lin.2010
- 3. Prestressedconcrete-N.KrishnaRaju.2015
- 4. Prestressedconcrete–Ramamurtham,2016



# SUBJECT TITLE: ADVANCED STRUCTURAL ANALYSISSUBJECT CODE: MTCE-104SEMESTER:IICONTACTHOURS/WEEK:Lecture(L)Tutori3

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

**Objective** .To understand analysis of indeterminate structures and adopt an appropriate structural analysis technique

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hours |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Stiffness Matrix Method: Basis of stiffness method, Influence coefficients,<br>Kinematic indeterminacy, Degree of freedom, Matrix approach to stiffness<br>method, Transformation of axes system, Formation of load vectors, Elastic<br>supports, Support displacements, Application of stiffness matrix method to<br>various type of structures e.g. Continuous beams, Trusses, Frames and grids,<br>partially discontinuous structures, Temperature effects | 10               |
| SECTION-II  | Flexibility Matrix Method: Compatibility equations, Flexibility coefficients,<br>Application of complimentary energy principles, Basis of the method,<br>Application of flexibility matrix method to various types of structures,<br>Analysis of pin jointed trusses, Rigid frames.                                                                                                                                                                           | 8                |
| SECTION-III | Finite Element Method: Introduction to finite element method, Theory of elasticity, Coordinate systems, Rotation of axes, Shape functions, Elements stiffness matrix and load vector, Triangular element in plane stress and strain.                                                                                                                                                                                                                          | 7                |
| SECTION-IV  | Numerical integration, Rectangular elements in flexure, Triangular element,<br>Rectangular element in plane stress and bending combined, Computer<br>programming concepts                                                                                                                                                                                                                                                                                     | 8                |

#### **Course Outcome:**

| CO1 | Students will be able to understand analysis of indeterminate structures and adopt an appropriate |  |
|-----|---------------------------------------------------------------------------------------------------|--|
|     | structural analysis technique                                                                     |  |
| CO2 | Determine response of structures by classical, iterative and matrix methods                       |  |
| CO3 | Obtain the static and kinematic indeterminacy of structure.                                       |  |
| CO4 | Analyze the beam and plane frame using Matrix method.                                             |  |

- 1. Matrix Analysis of Framed Structures by Gere and Weaver, edition 2004
- 2. Analysis of Indeterminate Structures by C.K. Wang, edition 2010
- 3. Advance Structural Analysis by A.K.Jain. edition 2015



### SUBJECT TITLE: PLASTIC ANALYSIS AND DESIGN OF STEEL STRUCTURESSUBJECT CODE: MTCE-105SEMESTER:ICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)Practical(P)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

To understand modes of structural collapse and to Perform the plastic analysis and design of various determinant and in-determinant structures.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                          | Contact<br>Hours |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Ductility of metals: Concept of plastic design, over loaded factors, ultimate<br>load as design criteria. Hinge formation in indeterminate structures,<br>Redistribution of moments, Assumption made for structures subjected to<br>bending only.                                 | 9                |
| SECTION-II  | Minimum weight design: concept, assumptions, Design of frame with<br>prismatic measures, Elements of linear programming and its application to<br>minimum weight design problems. Deflections: Assumption, calculation of<br>deflection at ultimate loads, permissible rotations. | 11               |
| SECTION-III | Secondary design considerations: Influence of direct load, shear, local buckling, lateral buckling, repeated loading and brittle fracture on moment capacity design of eccentrically loaded columns.                                                                              | 6                |
| SECTION-IV  | Problem of incremental: collapse, shake down analysis. Special consideration for design of structures using light gauge metals.                                                                                                                                                   | 8                |

#### **Course Outcome:**

| CO1        | compute plastic moment capacity of steel members,                       |
|------------|-------------------------------------------------------------------------|
| CO2        | analyze beams and frames using theory of plasticity,                    |
| CO3        | interpret the design of a frame considering secondary design parameters |
| <b>CO4</b> | design a frame using minimum weight design concept                      |

- 1. Baker J. and Heyman J., Plastic Design of Frames, Cambridge the University Press, 2010
- 2. Plastic Analysis and Design of Steel Structures, 2008
- 3. SP: 6(6) 1972, Handbook for Structural Engineers



### SUBJECT TITLE: ADVANCED FOUNDATION ENGINEERINGSUBJECT CODE: MTCE-106SEMESTER:IIICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

#### Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

To enable students select the best foundation solutions for different types of Civil Engineering problems

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact<br>Hours |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Shallow Foundations: Design considerations, factors of safety (including limit state), allowable settlements, location and depth of foundations, Codal provisions. Presumptive bearing, capacity. Bearing capacity theories. Layered soils. shear strength parameters. Bearing capacity from N-values, static cone and plate load tests. Total and differential settlement. Stress distribution. Consolidation settlement in clays (with correction factors). Immediate settlement. Settlement in sands from N-values Static cone and Plate load tests. | 10               |
| SECTION-II  | Soil structure interaction: Introduction to soil-foundation interaction<br>problems, soil behavior, Foundation behavior, interface behavior, soil<br>foundation interaction analysis, Soil response models, Winkler, Elastic<br>continuum, Two parameter elastic models, Elastic plastic behavior, Time<br>dependent behavior.                                                                                                                                                                                                                          | 8                |
| SECTION-III | Deep foundations: Type of Piles. Construction methods. Axial capacity of single piles-static formulae, Skin friction and end bearing in sands and clays. Axial capacity of groups. Settlement of single piles and groups. Uplift capacity. Negative skin friction. Pile load tests. Pile integrity tests. Laterally Loaded Piles: Short and long piles; Free head and fixed head piles; Lateral load capacity of single piles; Lateral deflection; Elastic analysis; Group effect; Lateral load test; Codal provisions. Caissons and Wells.             | 12               |
| SECTION-IV  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                |

#### **Course Outcome:**

| CO1 | Student would able to perform design of rectangular & trapezoidal combined footing, strao          |
|-----|----------------------------------------------------------------------------------------------------|
|     | footing and raft foundation                                                                        |
| CO2 | Student will be capable to analysing the mechanics of load transfer in piles; calculations of pile |
|     | load carrying capacity                                                                             |
| CO3 | Student shall be able to calculate load carrying capacity of well foundation and analyse of well   |
|     | foundation                                                                                         |
| CO4 | Student can perform analysis of retaining wall failure under earthquake load                       |

- 1. Kaniraj S.K., Design aids in soil mechanics and foundation engineering edition 2016
- 2. V.N.S. Murthy Advanced foundation Engineering edition 2015
- 3. John Wiley Joseph E. Bowles Foundation Analysis and Design 2010



### Program Name: M.Tech Civil Engineering

Program Code: CIV-401

SUBJECT TITLE: ADVANCEED TRAFFIC ENGINEERING SUBJECT CODE: MTCE-107

SUBJECT CODE. MICE-R SEMESTER:III CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

Provide an insight on traffic and its components, factors affecting road traffic and the design of intersection.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                        | Contact<br>Hours |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction: Elements of Traffic Engineering, Components of traffic system<br>road users, vehicles, highways and control devices. Consideration, Aesthetics<br>and selection of type of bridge (Review). Vehicle Characteristics: IRC<br>standards, Design speed, volume, Highway capacity and levels of service,<br>capacity of urban and rural roads, PCU concept and its limitations.       | 12               |
| SECTION-II  | Traffic Stream Characteristics: Traffic stream parameters, characteristics of<br>interrupted and uninterrupted flows Traffic Studies: Traffic volume studies,<br>origin destination studies, speed studies, travel time and delay studies,<br>parking studies, accident studies                                                                                                                 | 10               |
| SECTION-III | Traffic Regulation and Control: Signs and markings, Traffic System<br>Management, At-grade intersections, Channelization, Roundabouts Traffic<br>Signals: Pre-timed and traffic actuated. Design of signal setting, phase<br>diagrams, timing diagram, Signal co-ordination Grade Separated<br>Intersections: Geometric elements for divided and access controlled highways<br>and expressways. | 11               |
| SECTION-IV  | Traffic Safety: Principles and practices, Road safety audit. Intelligent<br>Transportation System: Applications in Traffic Engineering                                                                                                                                                                                                                                                          | 9                |

#### **Course Outcome:**

| CO1 | Identify traffic stream characteristics                                                          |
|-----|--------------------------------------------------------------------------------------------------|
| CO2 | Design a pre-timed signalized intersection, and determine the signal splits                      |
| CO3 | Assess level of services of roadway facilities                                                   |
| CO4 | Able to remember traffic regulations, impact of noise pollution, air pollution and the method of |
|     | controlling them                                                                                 |

- 1. Kadiyali, L.R., "Traffic Engineering & Transport Planning", Khanna Publishers, 2011
- 2. William, R.M. and Roger, P.R., "Traffic Engineering", Prentice Hall, 2013
- 3. Traffic & Highway Engineering by Nicholas J. Garber, 2016



#### SUBJECTTITLE: GEOMETRIC DESIGN OF TRANSPORTATION INFRASTRUCTURE **SUBJECTCODE: MTCE-108 SEMESTER: II CONTACTHOURS/WEEK:** Ι

| 3 1 0 4 | Lecture (L) | Tutorial (T) | Practical (P) | Credit(C) |
|---------|-------------|--------------|---------------|-----------|
|         | 3           | 1            | 0             | 4         |

**Internal Assessment: 40** End Term Exam: 60 **Duration of Exam; 3Hrs** 

#### Objective

To equip the student for examine geometric characteristics and design elements of highways and streets

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                   | Contact<br>Hours |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Driver characteristics, Vehicle Characteristics, Traffic, Capacity and Level<br>of Service, Design Speed. Objectives of Geometric Design, Cross Section<br>Elements: Design specifications; Pavement Surface characteristics– Skid<br>Resistance, Camber, Objectives. Specifications for hill roads.                                                       | 10               |
| SECTION-II  | Horizontal Alignment of Roads: Sight Distances – Stopping Sight Distance,<br>Overtaking Sight Distance and Intermediate Sight Distance ; Objectives of<br>horizontal curves; Super elevation; Extra- widening on Curves; Vertical<br>Curves –Summit Curves, Valley Curves and Design criteria for Vertical<br>Curves; Sight Distances, Grade Compensation. | 10               |
| SECTION-III | Geometric Design of Intersections : Types of Intersections; At-grade<br>Intersections –Channelization; Traffic Islands and Design standards; Rotary                                                                                                                                                                                                        | 14               |
| SECTION-IV  | Airport and Railway Infrastructure Design – Runway orientation, Site selection, Wind rose analysis. Geometric design standards for runways,                                                                                                                                                                                                                | 10               |

#### **Course Outcome:**

| CO1 | Design cross-sectional, horizontal and vertical elements of roads |
|-----|-------------------------------------------------------------------|
| CO2 | Design intersection, roundabout, exit & entry ramps               |
| CO3 | Design pedestrian, bicycle and parking facilities                 |
| CO4 | Design street lighting system for roads                           |

- 1. Principles and Practice of Highway Engineering, 2011
- 2. Highway Engineering, C.E.G. Justo and S.K. Khanna, Nem Chand and Brothers. 2003
- 3. IRC Codes for Signs, Markings and Mixed Traffic Control in Urban Areas. 2001
- 4. Railway Engineering, Arora and Saxsena 2014



## SUBJECT TITLE: PAVEMENT MATERIAL CHARACTERIZATIONSUBJECT CODE: MTCE-109SEMESTER: IICONTACTHOURS/WEEK:Lecture (L)Tutorial (T)Pract

| Lecture (L) | Tutorial (T) | Practical (P) | Credit(C) |
|-------------|--------------|---------------|-----------|
| 3           | 1            | 0             | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### **Objective:**

To characterize various material inputs for different pavement design procedures.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Subgrade Soil Characterization: Properties of subgrade, soils, A critical look<br>at the Different laboratory and in-situ procedures for evaluating the<br>mechanical properties of soils viz. GI, CBR & Plate Load test, Field<br>compaction and control, Modulus of subgrade reaction. Aggregate:<br>Introduction, Desirable properties of road aggregates, Tests for Road<br>aggregates.                                                                                                                                                                                                                                            |                  |
| SECTION-II  | Bituminous materials: Introduction, Types of Bituminous materials,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08               |
| SECTION-III | Cement and Cement Concrete Mix Characterization: Types of cements and<br>basic cement properties, Special cements; Quality tests on cement; Tests on<br>cement concrete including compressive strength, flexural strength, modulus<br>of elasticity and fatigue properties; Introduction to advanced concretes like<br>self-compacted concrete, Light weight concrete, Roller Compacted Concrete<br>for pavement application; Role of different admixtures in cement concrete<br>performance; Joint filers for Jointed Plain Cement Concrete Pavements and<br>their characterization; Nano technology applications in cement concrete. | 12               |
| SECTION-IV  | Soil Stabilization: Introduction, Mechanics of soil stabilization, stabilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10               |



#### **Course Outcome:**

| CO1        | To impart practical and latest knowledge on different paving materials along with their |
|------------|-----------------------------------------------------------------------------------------|
|            | characterization                                                                        |
| CO2        | Learning of Conventional and Advanced Charactrisation of Pavement Materials             |
| CO3        | Finding practical solution to Mix design of Pavement Materials                          |
| <b>CO4</b> | Develop suitable performance tests and material specifications.                         |

- Kerbs Robert D. and Richard D. Walker, Highway Materials, McGraw-Hill 1971
   Relevant IRC and IS Codes of Practices for pavement materials 2014
- 3. Highway Engineering, S.K. Khanna C.E.G. JUSTO Railway Engineering, Arora and Saxsena.2014



#### SUBJECTTITLE: PAVEMENT ANALYSIS AND DESIGN SUBJECTCODE: MTCE-110 SEMESTER:II CONTACTHOURS/WEEK: Lecture (L) Tutor

| Lecture (L) | Tutorial (T) | Practical (P) | Credit(C) |
|-------------|--------------|---------------|-----------|
| 3           | 1            | 0             | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

This course covers the structural and functional design of pavement structures for highway and airport situations with an emphasis on highways. Structural design examines the direct influence of the vehicles on material and thickness requirements to provide a pavement with suitable design life and good performance.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact<br>Hours |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Pavement Types: Definition, highway and airport pavement comparison, wheel loads, tyre pressure, Contact pressure, design factors. Type of distresses structural and functional, serviceability.                                                                                                                                                                                                                                                                                                            | 07               |
| SECTION-II  | Stresses in Flexible: Layered system concept, multilayered solutions.<br>Burmister's method, Fundamental design concepts. Stresses in Rigid<br>Pavements: Relative stiffness of slabs. Modulus of subgrade reaction.<br>Stresses due to warping, stresses due to friction, effect of warping,<br>contraction and expansion. Plain versus reinforced pavements, stresses in<br>dowel bar, tie bar, combined stresses.                                                                                        | 10               |
| SECTION-III | Design of Flexible Pavements: Design factors. Design wheel load.<br>Equivalent single wheel load. Difference between airport and highway<br>design concept. Different design methods. CBR, GI, Triaxial method,<br>McLeod method. Design of Rigid Pavement: General design considerations.<br>Design of joints in cement concrete pavements, spacing of expansion joint,<br>spacing of contraction joints. Design of dowel bar. Design of tie bar. IRC<br>recommendations for design of concrete pavements. | 10               |
| SECTION-IV  | Pavement Evaluation and Rehabilitation: Pavement distresses in flexible and                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04               |

#### **Course Outcome:**

| CO1        | To carry out the design of flexible pavement               |
|------------|------------------------------------------------------------|
| CO2        | To carry out the design of rigid pavements                 |
| CO3        | To understand the factors that affect pavement designing   |
| <b>CO4</b> | To understand the important features of pavement designing |

#### **Recommended Books:**

1. Principles of Transportation Engineering by Chakroborty & Das, PrenticeHall, India. 2014

2. Highway Engg by S. K. Khanna & C.E.G. Justo, New Chand Bros., Roorkee. 2001

3. Principles of Pavement Design, by Yoder E.J. and Witczak M.W. 2nd, John Wiley & Sons, INC.1975

4. Principles and Practice of Highway Engg. By L.R.Kadiyali, Khanna Publishers, Delhi. Third Edition2017



#### SUBJECTTITLE: ENVIRONMENTAL CHEMISTRY SUBJECTCODE: MTCE-111 SEMESTER: I CONTACTHOURS/WEEK: Lecture (L) T

| Lecture (L) | <b>Tutorial</b> (T) | Practical (P) | Credit(C) |
|-------------|---------------------|---------------|-----------|
| 3           | 1                   | 0             | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

To do research and solve issues, which will be valuable in both environmental and non-environmental occupations.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                     | Contact<br>Hours |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Concept of Green Chemistry rates of chemical and biochemical reactions with applications in disinfection and biological treatment.                                                                                                                                           | 07               |
| SECTION-II  | Acid-base reactions and the carbonate system with applications in<br>neutralization and pH control, Complexation reactions and chelation with<br>applications in chemical coagulation and metals bioavailability.                                                            | 14               |
| SECTION-III | Precipitation and dissolution phenomena with applications in iron and<br>phosphate removal and carbonate scaling, Oxidation-reduction reactions<br>with applications in metals removal processes (e.g., hexchromereduction),<br>biochemical reactions and acid mine drainage | 08               |
| SECTION-IV  | A survey of organic chemistry and how organic compounds react and behave<br>in the environment, including principles associated with air-water<br>partitioning, solvent-water partitioning, and sorption phenomena with<br>application in air stripping and adsorption.      | 10               |

#### **Course Outcome:**

| CO1 | Describe water purification and waste treatment processes and the practical chemistry involved. |
|-----|-------------------------------------------------------------------------------------------------|
| CO2 | Describe causes and effects of environmental pollution by energy industry and discuss some      |
|     | mitigation strategies.                                                                          |
| CO3 | Demonstrate knowledge of chemical and biochemical principles of fundamental environmental       |
|     | processes in air, water, and soi                                                                |
| CO4 | Recognize different types of toxic substances & responses and analyze toxicological information |

- 1. Environmental Chemistry Book by Colin Baird and Michael Cann 2012
- 2. Environmental Chemistry: Microscale Laboratory Experiments Book by Jorge G. Ibanez,
- MargaritaHernandez-Esparza, and Mono Mohan Singh 2011
- 3. Elements of environmental chemistry Textbook by R. A. Hites 2013



#### SUBJECTTITLE: PHYSICSOF ENVIRONMENT SUBJECTCODE: MTCE-112 SEMESTER:II CONTACTHOURS/WEEK: Lecture (L)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit(C) |
|-------------|--------------|---------------|-----------|
| 3           | 1            | 0             | 4         |

#### Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### **Objective:**

This course is designed to illustrate the many aspects of physics that pervade environmental processes in our everyday lives and in naturally occurring phenomena.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                | Contact<br>Hours |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Radiation Science:Radiation spectrum (ionizing & non ionizing radiation),<br>Laws of radioactive disintegration, Interaction of nuclear radiation with<br>matter (qualitative discussion only), Dosimetry and effects of radiations.                                                                                    | 06               |
| SECTION-II  | Radiation detectors (GM counter, Ionization counter, Proportional counter<br>and Scintillation counter), Radioactive waste management. Atmospheric<br>Physics : Basic structure of atmosphere, Stefan Law, Wien's displacement<br>law, Planck's Temperature, Earth's radiation budget, Atmospheric<br>photosensitivity. | 14               |
| SECTION-III | Fundamental forces and apparent forces, mass, momentum and energy conservation, Hydrostatic equilibrium. Adiabatic lapse rates and stability, Geostrophic balance, Planetary atmospheres.                                                                                                                               | 08               |
| SECTION-IV  | Climate Physics :Green-house effect, Feedback mechanisms, Ozone layer depletion and Global warming.                                                                                                                                                                                                                     | 05               |

#### **Course Outcome:**

| CO1 | study the effects of radiation.                                                              |
|-----|----------------------------------------------------------------------------------------------|
| CO2 | Concept of radioactive waste management.                                                     |
| CO3 | Learn about the fundamental forces and hydrostatic equilibrium.                              |
| CO4 | discuss the problems of energy demand and explain the possible contributions of renewable to |
|     | energy supply                                                                                |

- 1. Nuclear Physics, D.C. Tayal, Himalaya Pub. House 2009
- 2. Physical Geography, Strahler & Strahler, J. Wiley Pub. 2013
- 3. Introduction to Health Physics, H. Cember, McGraw-Hill 2008
- 4. Mid-Latitude Atmospheric Dynamics, J. E. martin, J. Wiley Pub. 2006



#### SUBJECTTITLE: AIR POLLUTION AND CONTROL SUBJECTCODE: MTCE-113 SEMESTER: II CONTACTHOURS/WEEK: Lecture (L) Tu

| Lecture (L) | Tutorial (T) | Practical (P) | Credit(C) |
|-------------|--------------|---------------|-----------|
| 3           | 1            | 0             | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

To enable the students to learn about Air Pollution, effects of air pollution, Global effects, Sampling of pollutants, Meteorology and air pollution, Atmospheric stability, Plume rise and dispersion and Prediction of air quality.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                         | Contact<br>Hours |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Air pollutants – Sources and classification of pollutants and their effect on<br>human health, vegetation and property- Effects - Reactions of pollutants<br>and their effects-Smoke, smog and ozone layer disturbance - Greenhouse<br>effect –Ambient and stack sampling.                                                                                                                       | 07               |
| SECTION-II  | Atmospheric Phenomena - Dynamism of atmosphere, Energy balance of<br>atmosphere, Meteorological aspects, Wind and wind roses, Environmental<br>and adiabatic lapse rates, Derivations of DALR, WALR and ELR,<br>Atmospheric stability, Factors influencing stability, Temperature<br>inversions, Mixing height.                                                                                  | 08               |
| SECTION-III | Atmospheric diffusion of pollutants: Transport, transformation and deposition of air. Contaminants - Air sampling & pollution measurement methods - Ambient air quality, and emission standards, Modelling-Gaussian model and equation, Air quality index. Particulate emission control: Settling chambers, cyclone separation, Wet collectors, fabric filters, and electrostatic precipitators. | 14               |
| SECTION-IV  | Particulate emission control: Settling chambers, cyclone separation, Wet                                                                                                                                                                                                                                                                                                                         | 14               |

#### **Course Outcome:**

| CO1 | Apply the basic concepts of fluid and particle mechanics                                         |
|-----|--------------------------------------------------------------------------------------------------|
| CO2 | Design industrial ventilation systems                                                            |
| CO3 | Design and evaluate removal efficiency of particulates of various air pollution control devices  |
| CO4 | Demonstrate the designing and operation of various air pollution control devices for the removal |
|     | of gaseous pollutants from both stationary as well as mobile sources                             |

#### **Recommended Books:**

1. Wark Kenneth and Warner C.F, Air pollution its origin and control. Harperand Row Publishers, 1998

- 2. Rao C.S., Environmental Pollution Control Engineering, New age international Ltd, New Delhi. 2007
- 3. Perkins, H.C., Air Pollution, McGraw-Hill . 1977
- 4. Rao M.N. and Rao H.V.N., Air Pollution, Tata McGraw-Hill. 1988



## SUBJECTTITLE INDUSTRIAL AND HAZARDIOUS WASTE MANAGEMENTSUBJECTCODE: MTCE-114SEMESTER: IICONTACTHOURS/WEEK:Lecture (L)Tutorial (T)Practical (P)

| Lecture (L) | Tutorial (T) | Practical (P) | Credit(C) |
|-------------|--------------|---------------|-----------|
| 3           | 1            | 0             | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

This subject deals with the pollution from major industries and methods of controlling the same. The student is expected to know about the polluting potential of major industries in the country and the methods of controlling the same.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                          | Contact<br>Hours |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Hazardous Waste Treatment and Disposal: Biological and chemical treatment of hazardous wastes; Solidification and stabilization of wastes; Incineration for the treatment and disposal of hazardous wastes; Land farming; Landfill disposal of hazardous waste; Bioremediation of hazardous waste disposal sites. | 14               |
| SECTION-II  | Legal Requirements: Municipal solid waste rules; Hazardous waste rules;                                                                                                                                                                                                                                           | 10               |
| SECTION-III | Individual and Common Effluent Treatment Plants – Zero effluent discharge systems Wastewater reuse –Disposal of effluent on land – Quantification, characteristics and disposal of Sludge.                                                                                                                        | 08               |
| SECTION-IV  | Waste minimization – Equalization, Neutralization, Oil separation, Flotation,<br>Precipitation, Heavy metal Removal, adsorption, Aerobic and anaerobic<br>biological treatment.                                                                                                                                   | 08               |

#### **Course Outcome:**

| CO1 | Regulatory requirement applicable to the handling and management of MSW and special category   |
|-----|------------------------------------------------------------------------------------------------|
|     | waste.                                                                                         |
| CO2 | Acquiring the knowledge of collection and transportation and solid waste route selection and   |
|     | types of waste collection                                                                      |
| CO3 | Understanding and appreciating the environmental pollution and nuisance potential of municipal |
|     | solid waste and of special category wastes.                                                    |
| CO4 | ability to design facilities for the processing and reclamation of industrial waste water      |
|     |                                                                                                |

#### **Recommended Books:**

.

1."Environmental Engg." By Howard S. Peavy, Donald R. Rowe & George Tehobanoglous, McGraw Hill, International Edition.1985

2. Arceivala, S.J. and Asolekar, S.R., Wastewater Treatment for Pollution Control, 3rded., McGraw-HillEducation (India) Pvt. Ltd. 2016

 $\label{eq:control_state} 3. \ Eckenfelder, W.W., Industrial WaterPollutionControl, McGrawHill 2000$ 



# SUBJECTTITLE:UNIT PROCESS AND OPERATION-ISUBJECTCODE: MTCE-115SEMESTER: IICONTACTHOURS/WEEK:Lecture (L)Tute3

| Lecture (L) | Tutorial (T) | Practical (P) | Credit(C) |
|-------------|--------------|---------------|-----------|
| 3           | 1            | 0             | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

This course is designed to impart the knowledge about water quality indices

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                             | Contact<br>Hours |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Water Quality: Physical, chemical and biological parameters of water- Water<br>Quality requirement -Potable water standards -Wastewater Effluent<br>standards -Water quality indices. Water purification systems in natural<br>systems: Physical processes-chemical processes and biological processes-<br>Primary, Secondary and Tertiary treatment-Unit operations-unit processes. | 14               |
| SECTION-II  | Sedimentation: Types, Aeration and gas transfer, Coagulation and flocculation, coagulation processes -stability of colloids - destabilization of colloids transport of colloidal particles, Clariflocculation.                                                                                                                                                                       | 07               |
| SECTION-III | Filtration : theory of granular media filtration; Classification of filters; slow<br>sand filter and rapid sand filter; mechanism of filtration; modes of operation<br>and operational problems; negative head and air binding; dual and<br>multimedia filtration, pressure filters, principle of working and design.                                                                | 08               |
| SECTION-IV  | Theory of disinfection: Factors affecting disinfection, Disinfection - chlorine<br>dioxide; chloramines; ozonation; UV radiation. Miscellaneous methods: Ion<br>Exchange-processes, Application of Membrane . Processes, Reverse<br>Osmosis, Micro-filtration, Nano-filtration, Ultra filtration and Electro<br>dialysis                                                             | 10               |

#### **Course Outcome:**

| CO1 | Decide types of processes to treat water for various uses.                 |
|-----|----------------------------------------------------------------------------|
| CO2 | Configure processes for water treatment systems.                           |
| CO3 | Design water treatment units for conventional and specific water treatment |
| CO4 | Operate and maintain various processes in water treatment plants.          |

**Recommended Books** 1. Weber, W.J., Physicochemical processes for water quality control, JohnWiley and sons.1972

- 2. Peavy, H.S., Rowe, D.R. and Tchobanoglous, G.Environmental Engineering, McGrawHills, 1985.
- 3. MetcalfandEddy, WastewaterEngineering, TreatmentandReuse, TataMcGrawHillPublication.2009



Program Name: M.Tech Civil Engineering

Program Code: CIV-401

SUBJECT TITLE: UNIT PROCESS & OPERATION-II SUBJECT CODE: MTCE-116 SEMESTER:III CONTACTHOURS/WEEK: Lecture(L)

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### **Objective :**

This course provides the various waste water characteristics and the treatment techniques

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                            | Contact    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|             | Principles: Objectives of biological treatment - significance - aerobic and                                                                                                                                                                                                                                                                                                                         | Hours<br>7 |
| SECTION-I   | anaerobic treatment kinetics of biological growth - factors affecting growth - attached and suspended growth. Determination of kinetic coefficients for                                                                                                                                                                                                                                             |            |
|             | organics removal - Biodegradability assessment – selection of process – reactors – batch - continuous type – kinetics                                                                                                                                                                                                                                                                               |            |
| SECTION-II  | Waste Water Characteristics: Physical, Chemical, Biological characteristics<br>of waste water, sampling, flow measurement. Physical and Chemical<br>Treatment of Waste Water: Screening, Grit removal, Flow equalization,<br>Chemical precipitation, other solids removal operations. Disinfection with<br>Chlorine compound, Aeration, Control of odour, Control of volatile<br>organic compounds. | 14         |
| SECTION-III | Aerobic Treatment of Waste Water: Design and construction aspects and<br>the relevant parameters of significance of the following units. Activated<br>Sludge Process, Trickling Filters, Aerated Lagoons, Rotating Biological<br>Contactors,<br>Sequential Batch Reactors (SBR) and Stabilization pond                                                                                              |            |
| SECTION-IV  | Anaerobic Treatment of Waste Water: Sludge digestion theory and<br>principles, Septic tank design and Effluent disposal. Disposal of digested<br>sludge, Anaerobic ponds, UASB reactors and various modifications in<br>UASB process and anaerobic filters                                                                                                                                          | 6          |

#### **Course Outcome:**

| CO1 | Calculate design flow, characterize wastewater and prepare wastewater treatment flow schemes |
|-----|----------------------------------------------------------------------------------------------|
| CO2 | Plan and design the components of wastewater treatment systems                               |
| CO3 | Plan and design sludge treatment and disposal system                                         |
| CO4 | Understand the chemical engineering processes in waste water treatment                       |

#### **Recommended Books:**

 Arceivala S. J.Waste water Treatment for Pollution Control, TMH, New Delhi, Second Edition, 2000.
 Qasim S. R. Wastewater Treatment Plant, Planning Design & Operation, Technomic Publications, New York, 1994.

3.Metcalf and Eddy, Wastewater Engineering, Treatment and Reuse, Tata Mc GrawHill Publicat2003



### SUBJECT TITLE: PRINCIPAL AND<br/>SUBJECT CODE: MTCE-117PRACTICE MANAGEMENTSEMESTER: I<br/>CONTACTHOURS/WEEK:Lecture(L)Tutorial(T)

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

#### Internal Assessment:40 End Term Exam: 60 Duration of Exam; 3 Hrs

**Objective:** To understand the various aspects of management and will inculcate the ability to apply the multifunctional approach.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Management: Concept, Nature, Importance; Management: Art and Science,<br>Management as a Profession, Management vs. Administration, Management<br>Skills, Levels of Management, Characteristics of Quality Managers. Evolution<br>of Management: Early contributions, Taylor and Scientific Management,<br>Fayol's Administrative Management, Bureaucracy, Hawthorne Experiments and<br>Human Relations, Social System Approach, Decision Theory Approach. Social<br>Responsibility of Managers and Ethics in<br>Managing. | 13               |
| SECTION-II  | Introduction to Functions of Management Planning: Nature, Scope, Objectives<br>and Significance of Planning, Types of Planning, Process of Planning, Barriers<br>to Effective Planning, Planning Premises and Forecasting, Objective Setting:<br>Concept, Types and Process of Setting Objectives; Operational Planning Tools,<br>M.B.O.:Concept, Process and Managerial<br>Implications, Decision Making: Concept, Process, Types and Styles of Decision<br>Making, Decision Making in Risk and Uncertainty               | 12               |
| SECTION-III | Organizing: Concept, Organization Theories, Forms of Organizational<br>Structure, Combining Jobs, Departmentation, Span of Control, Delegation of<br>Authority, Authority & Responsibility, Principles of Organizational Designing,<br>Contingency Approach to Organization Design, Learning Organizations.<br>Staffing: Concept, System Approach, Manpower Planning,<br>Job Design, Recruitment & Selection, Training & Development, Performance<br>Appraisal Directing: Concept, Direction and Supervision.              | 10               |
| SECTION-IV  | Organizing: Concept, Organization Theories, Forms of Organizational<br>Structure, Combining Jobs, Departmentation, Span of Control, Delegation of<br>Authority, Authority & Responsibility, Principles of Organizational Designing,<br>Contingency Approach to Organization Design, Learning Organizations.<br>Staffing: Concept, System Approach, Manpower Planning,<br>Job Design, Recruitment & Selection, Training & Development, Performance<br>Appraisal Directing: Concept, Direction and Supervision.              | 10               |

#### **Course Outcome:**

| CO1 | Students will enable to study the evolution of Management,                                |
|-----|-------------------------------------------------------------------------------------------|
| CO2 | Students will come apply the functions and principles of management.                      |
| CO3 | Students will well versed about the application of the principles in an organization.     |
| CO4 | Students will able to know about dynamics of controlling an emerging issues in management |

- 1. Stoner, Freeman & Gilbert Jr-Management (Prentice Hallof India, 6th Edition 2009)
- 2. Koontz Harold & Weihrich Heinz Essentials of management (Tata McGraw Hill, 5thEdition 20008



## SUBJECT TITLE: MATERIAL & EQUIPMENT MANAGEMENTSUBJECT CODE: MTCE-118SEMESTER: IICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment:40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

To demonstrate basic knowledge about construction equipment and machineries.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| SECTION-I   | GENERAL MANAGEMENT: Introduction and characteristics of<br>management, Principle and function of management, Scientific management.<br>Materials Management: Scope, Objective and functions of material<br>management, Procurement and store management, Materials handling<br>management, Inventory control and management. Disposal of Surplus<br>Materials                                                                                                                                                                                                                                                                            | Hours<br>12 |
| SECTION-II  | I Earth Moving Equipment Crawler and wheel tractors their functions, types<br>an specifications; Gradability Bull dozers and their use; tractor pulled<br>scrapers, their sizes and output; effect of grade an rolling resistance on the<br>output of tractor pulled scrapers Earth loaders; Placing and compacting earth<br>fills. Power shovels-functions, selection, sizes, shovel dimension and<br>clearances, output, Draglines functions, types sizes, output clam shells; Safe<br>lifting capacities and working ranges cranes; Hoes, Trenching machine types<br>and production rate calculation of producing rates of equipment. |             |
| SECTION-III | Hauling Equipment : Trucks; Bottom dump wagons; capacities of trucks and wagons Balancing the capacities of hauling units with the size excavator; effect of grade, rolling resistance and altitude on the cost/performance of hauling equipment; balancing excavating hauling equipment examples                                                                                                                                                                                                                                                                                                                                        | 10          |
| SECTION-IV  | Drilling, Blasting and Tunneling Equipment : Definition of terms, bits,<br>Jackhammers, Drifters, wagon drills, che drills, piston drills, blast hole drills,<br>shot drills, diamond drills, tunneling equipment, selecting the drilling<br>method equipment; selecting drilling pattern; Rates for drilling rock,<br>compressors. Pile Driving Equipment : Pile hammers, selecting a pile<br>hammer, loss of energy due to impact, Energy losses due to causes other<br>than impact.                                                                                                                                                   | 10          |



#### **Course Outcome:**

| CO1 | Students will be able to analyze the techniques of erection of construction units.     |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Students will be able to demonstrate basic knowledge about construction equipment and  |
|     | machineries.                                                                           |
| CO3 | Students will be able to clearly explain about the hauling and conveying equipment.    |
| CO4 | Students will be able to identify and manage with respect to time and their motion and |
|     | movements.                                                                             |

#### **Recommended Books:**

1. Construction equipment and its planning and application Dr. Mahesh Verma.

- 2. Heavy construction planning equipment and methods -Jagman Singh Oxford and IBH.Edition 2004
- 3. Construction Planning equipement and Methods by RL Peuripo Tata McGraw Hill. (2007)
- 4. Mangement Machines and Methods in Civil Engineering-John, Christan, John Wiley and Sons (2008)



### Program Name: M.Tech Civil Engineering

#### Program Code: CIV-401

## SUBJECT TITLE: INFRASTRUCTURE DEVELOPMENT AND MANAGEMENTSUBJECT CODE: MTCE-119SEMESTER : IICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)Practical(P)

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

#### Internal Assessment:40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

The Course is designed to familiarize the students with the issues and challenges of developing infrastructure in India

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact<br>Hours |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction: Impact of Infrastructure development on economic development, standard of living and environment. Reasons for rise of public sector and government in infrastructural activities. Changed socio-economic scenario and current problems and related issues Policies on Infrastructure Development: A historical review of the Government policies on infrastructure. Current public policies on transportations, power and telecom sectors. Plans for infrastructure development. Legal framework for regulating private participation in roads and highways, Ports & Airports, Power and Telecom.                                                                                                                                                                                                                                                                                                                                                                                                                   | 12               |
| SECTION-II  | Construction and Infrastructure: Construction component of various<br>infrastructure sectors. Highway, ports and aviation, oil and gas, power,<br>telecom, railways, irrigation. Current scenario, future needs, investment<br>needed, regulatory framework, government policies and future plans.<br>Technological and methodological demands on construction management in<br>infrastructure development projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10               |
| SECTION-III | Infrastructure Management: Importance, scope and role in different sectors<br>of construction. • Highway Sector: Repayment of Funds, Toll Collection<br>Strategy, Shadow tolling, and direct tolls, Maintenance strategy, Review of<br>toll rates & structuring to suit the traffic demand, • Irrigation Projects: Large<br>/ Small Dams - Instrumentation, monitoring of water levels, catchments area,<br>rainfall data management, prediction, land irrigation planning & policies,<br>processes Barrages, Canals. • Power Projects: Power scenario in India,<br>Estimated requirement, Generation of Power distribution strategies, national<br>grid, load calculation & factors, Hydropower - day to day operations,<br>management structures, maintenance, Thermal Power, Nuclear Power. •<br>Airports: Requisites of domestic & International airports & cargo & military<br>airports, facilities available, Terminal management, ATC. • Railways: Mass<br>Rapid Transport System MRTS, LRT, Multi-modal Transport System. | 12               |
| SECTION-IV  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10               |



#### **Course Outcome:**

| CO1 | Achieve Knowledge of Planning and development of problem solving skills in management. |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Understand the principles of financial fundamentals.                                   |
| CO3 | Develop analytical skills.                                                             |
| CO4 | Summarize the solution of economic evaluation techniques.                              |

#### **Recommended Books:**

1. Chandra, Prassanna, "Projects, Planning, Analysis, Selection, Financing, Implementation and Review", Tata McGraw-Hill, New Delhi, 2006.

2.Raghuram, G. & Jain, R., "Infrastructure Development & Financing Towards a Public-PrivatePartnership", Macmillan India Ltd., New Delhi, 2002

3. NICMAR, "Construction Business Opportunities in Infrastructure Development in India", NICMAR, Mumbai, 2001.

4. India Infrastructure Report 2001 & 2002, Oxford University Press, New Delhi, 2001/02

5. Parikh Kirit S., "India Development Report, 1999-2000", Oxford University Press, New Delhi, 2002



### SUBJECT TITLE: PROJECT MANAGEMENT & SYSTEM TECHNIQUESUBJECT CODE: MTCE-120SEMESTER: IIICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)Practi

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment:40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

This syllabus introduces students to the concepts, tools and issues of the management of information technology and systems, the process and tools of project management, and the control of organisational systems.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact<br>Hours |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Project Management Concepts and Needs Identification Attributes of a<br>Project, Project Life Cycle, The Project management Process, Global Project<br>Management, Benefits of Project Management, Needs Identification, Project<br>Selection, Preparing a Request for Proposal, Soliciting Proposals, Project<br>organization, the project as part of the functional organization, pure project<br>organization ,the matrix organization, mixed organizational systems.                                                                                                                                                          | 12               |
| SECTION-II  | Project Planning and Scheduling: Design of project management system; project work system; work breakdown structure, project execution plan, work packaging plan, project procedure manual; project scheduling; bar charts, line of balance (LOB) and Network Techniques (PERT / CPM)/ GERT, Resource allocation,Crashing and Resource Sharing Project Monitoring and Control Planning, Monitoring and Control; Design of monitoring system; Computerized PMIS (Project Management Information System). Coordination; Procedures, Meetings, Control; Scope/Progress control, Performance control, Schedule control, Cost control, | 10               |
| SECTION-III | Project Performance Indicators; Project Audit; Project Audit Life Cycle,<br>Responsibilities of Evaluator/ Auditor, Responsibilities of the Project<br>Manager.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12               |
| SECTION-IV  | Drilling, Blasting and Tunneling Equipment : Definition of terms, bits,<br>Jackhammers, Drifters, wagon drills, piston drills, blast hole drills, shot<br>drills, diamond drills, tunneling equipment, selecting the drilling method<br>equipment; selecting drilling pattern; Rates for drilling rock, compressors.                                                                                                                                                                                                                                                                                                              | 10               |

**Course Outcome:** 

| CO1 | Students will acquire skill in designing project proposal for various domains                  |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Students will understand and analyze different techniques of project management- financial,    |
|     | technical, environmental and market demand                                                     |
| CO3 | Students will be able to compare various scheduling techniques                                 |
| CO4 | Students will be able to develop the abilities in project evaluation techniques like PERT, CPM |
|     | etc.                                                                                           |

- 1. Project Management Gido / Clements Cengage 5th (2010)
- 2. Project Management, Meredith Mantel, Wiley 8th edition(2011)
- 3. Project Management, S.Choudhury, TMH



### SUBJECT TITLE: QUALITY , SAFETY AND ENVIRONMENT MANAGEMENTSUBJECT CODE: MTCE-121SEMESTER:IIICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)Practical(P)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exams: 60 Duration of Exam; 3 Hrs

#### Objective

Advance Diploma in Quality Health Safety & Environment provides students with a solid foundation in the managerial aspects of developing and implementing quality, health and safety management systems that can move organizations toward a more sustainable and socially responsible future.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction To Safety Philosophy: Sequence of Accident Occurrence,<br>Occupational Injuries-Effects of Industrial Accidents, Analysis of Accidents,<br>Injury Data, Accident Investigations & Reporting, Accident Constringent.<br>Safety & Health Management: Employer & Employee Responsibilities,<br>Record-keeping & Reporting Requirements, Safety Organization,<br>Responsibilities of Safety Officer, Supervisors, Safety committees | 12               |
| SECTION-II  |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12               |
| SECTION-III | Indian Statutes: Central Acts, Factory's Act, AP Factory Rules, Construction<br>Safety Regulations, Petroleum Rules 2002, Electrical Act & Rules. Fire<br>Safety: Basic Elements, Causes, Industrial Fires, Explosions, Effect On<br>Environment, Property & Human Loss, Prevention Techniques, Building<br>Design, Fire Protection Systems, Contingency Plan, Emergency<br>Preparedness, Evacuation                                         | 10               |
| SECTION-IV  | Industrial Best Practices: In Electrical, Mechanical, Fire, Machine Guarding,<br>Personal Protective Equipment, Occupational Health, Ergonomics<br>Ambulance, Noise Abatement Methods, Management Of Contractors.<br>Occupational Safety & Management Standards: Indian Standards, OHSAS<br>18001 Standard and its Elements, CE Certificate, Social Accountability<br>Standards, System Implementation, Benefits.                            | 10               |

**Course Outcome:** 

| CO1 | Students will be able to understand the construction accidents and Legal Implications   |
|-----|-----------------------------------------------------------------------------------------|
| CO2 | Students will be able to clearly explain the Elements of an Effective Safety Programme. |
| CO3 | Students will be able to Elaborate the concept on Safety in Construction Contracts.     |
| CO4 | Students will be able to understand the Safe Workers and its types                      |

#### **Recommended Books:**

 Industrial safety and health, David L. Goetsch, Macmillan Publishing Company, 1993.
 Handbook of environmental health and safety, Vol I & II, Herman Kooren, Michael Bisesi, Jaico Publishing House, 1999.



#### SUBJECT TITLE: CONTRACTS MANAGEMENT SUBJECT CODE: MTCE-122 SEMESTER: IV CONTACTHOURS/WEEK: Lecture(L)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment:40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

To make student capable of understanding and reviewing various provisions included in the contract for effective management of the projects.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact<br>Hours |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Construction Contracts: a) Standard forms of contracts, methods of inviting tenders, pre-bid meetings, pre-qualification system, scrutiny of tenders and comparative statement Contract formation, conditions of contracts, contracts with various stakeholders on a major construction projects, contract pricing by the client, project management consultants and the contractor, contract performance, contract correspondence and contract closure.                                 | 10               |
| SECTION-II  | Construction Claims: Extra items and causes of claims. Types of construction claims, documentation. settlement of claims, extension of time. Dispute Resolution :Causes of disputes and importance of role of various stakeholders in prevention of disputes, Alternate Dispute Resolution methods- mediation, conciliation, arbitration and Dispute Resolution Boards.                                                                                                                  | 10               |
| SECTION-III | Contract Conditions: a)General condition and Particular conditions,<br>conditions of Ministry of Statistics and Program Implementation-<br>Government Of India. Model forms of contract. Role of Planning<br>Commission. b) ICE conditions-Introduction, FIDIC conditions- evolution of<br>FIDIC document, types based on whether design is of employer or<br>contractor, Design & Build contract, EPC contract, short forms of contract-<br>Colour Code. Various conditions of Red Book | 12               |
| SECTION-IV  | Indian Contract Act (1872):a)Definition of the contract as per the ACT.<br>Valid, Voidable, Void contracts, Objectives of the act. b)Clauses 1 to 75-<br>Contract formation, contract performance, valid excuses for<br>nonperformance, Breach of contract, effects of breach- understanding the<br>clauses and applying them to situations/scenarios on construction projects.<br>Importance of the Workmen's Compensation Act on construction projects.                                | 12               |

#### **Course Outcome:**

| CO1 | Students will be able to involve the principles of planning and analyzing of contracts.        |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Students will be able to study the process of claim settlement and dispute resolution in       |
|     | construction.                                                                                  |
| CO3 | Students will be able to provide a coherent development to the students to evaluate and design |
|     | construction contract documents.                                                               |
| CO4 | Students will be able to involve the student about the Indian Contract Act (1872).             |

#### **Recommended Books:**

1. Civil Engineering Contracts and Estimates - B. S. Patil – Universities Press- 2006 Edition, reprinted in2009.

2. The Indian Contract Act (9 of 1872), 1872- Bare Act- 2006 edition, Professional Book Publishers.



#### SUBJECT TITLE: ADVANCE SOIL MECHANICS SUBJECT CODE: MTCE-123 SEMESTER:I CONTACTHOURS/WEEK: Lecture(L)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

This course is designed to Understand the soil reinforcement mechanisms.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Foundations - Theory and Design: Isolated Footing (Square, Rectangular),<br>Combined Footing (Rectangular, Trapezoidal, Strap), Raft Footing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10               |
| SECTION-II  | Soil Structure: - Type of bonds, Important clay minerals, Atomic and symbolic representation, Base exchange capacity, Force fields between soils particles and exchangeable ions, Guoy – Champ man diffused double layer theory, Clay structural measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10               |
| SECTION-III | Behavior of compacted soils- General, Effect of compaction on structure<br>,Swelling pressure, Shrinkage, Shear Strength, Pore Water pressure,<br>Permeability, Comparison of dry of O.M.C & wet of O.M.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10               |
| SECTION-IV  | Elastic theories of stress distributions in soils - Boussinesq's equation,<br>Wester-gaard, Burmister Theories, Different conditions of loads,<br>Constitutive relationship for soils. Shear strength parameters of cohesion less<br>and saturated cohesive soils, Principles of Effective stress condition, Effect<br>of rate of stress on shear parameters , Stress- Strain relationship , Skempton's<br>Pore pressure coefficients, Hvorslev's true shear parameters, Effect of over<br>consolidation on shear parameters. Immediate settlement, Methods of<br>determination, Estimation of Reconsolidation pressure. Three-dimensional<br>consolidation pre-compression of clay deposits with and without sand<br>drains. Secondary consolidation factors. | 15               |

#### **Course Outcome:**

| CO1 | Predict the suitability of clayey soil for various geotechnical applications                      |
|-----|---------------------------------------------------------------------------------------------------|
| CO2 | Familiarity with advanced equipment's                                                             |
| CO3 | Analyse and interpret the state of stress in soil and evaluate various failure criteria for soils |
| CO4 | Knowledge on critical state model for the deformation and strength of soils                       |

- 1. Grim, R.E. " Clay Mineralogy"(2006)
- 2. Harr, M.E. "Foundation of Theoretical soil Mechanics" (2010)
- 3. Lambe& Whitman " Soil Mechanics"(2008)
- 4. Scott, R.F. "Principles of Soil Mechanics" (2016)



#### SUBJECT TITLE: GROUND IMPROVEMENT TECHNIQUES SUBJECT CODE: MTCE-124 SEMESTER: II CONTACTHOURS/WEEK: Lecture(L) Tutorial(7

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

The students will learn the importance and fundamentals of ground improvement techniques for measuring field parameters by using traditional and modern methods involved in civil construction.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                   | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction: Need of ground improvement, different methods of ground improvement.                                                                                                                                                                                                                                                                                         | 10               |
| SECTION-II  | Ground improvement in granular soils: In place densification by (i) Vibro – flotation (ii) Compaction pile (iii) Vibro-compaction piles (iv) Dynamic compaction (v) Blasting                                                                                                                                                                                               | 8                |
| SECTION-III | Ground improvement in cohesive soils: Compressibility, vertical and radial consolidation, preloading methods. Types of drains, construction techniques. Stone column: Function, design principals, load carrying capacity, construction techniques.                                                                                                                        | 12               |
| SECTION-IV  | Ground improvement by Grouting and Soil Reinforcement: Grouting in soil,<br>types of grout, characteristics, grouting methods. Soil Reinforcement:<br>Mechanism, types of reinforcing elements, reinforcement of soil beneath the<br>road, foundation. Geosynthetics and applications. Soil stabilization:<br>Mechanical, Lime, Cement, Fly ash, Resins & Other Chemicals. | 12               |

#### **Course Outcome:**

| CO1 | Will gain competence in properly devising alternative solutions to difficult and earth construction |
|-----|-----------------------------------------------------------------------------------------------------|
|     | problems                                                                                            |
| CO2 | To evaluate their effectiveness before, during and after construction.                              |
| CO3 | To study many different approaches to the ground modification broadens of the mind of any           |
|     | engineer and inspires creativity                                                                    |
| CO4 | To improve geotechnical construction and related fields                                             |

#### **Recommended Books:**

1. M.P. Moasley" Ground Improvement" 2<sup>nd</sup> Edition, 2010.

2. P. Purushothama Raj " Ground Improvement", 2<sup>nd</sup> edition 2005.



# SUBJECT TITLE: SUBSURFACE GEOPHYSICAL METHODSSUBJECT CODE: MTCE-125SEMESTER: IICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)3

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

This course is designed to do the soil exploration and its stabilization with different tests.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                             | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction: Necessity and Importance of soil exploration, Method of sub<br>surface exploration Test pits, Trenches, Caissons, Tunnels and drifts, Wash<br>boring, Percussion drilling, Rotary drilling, Factors affecting the selection<br>of a suitable method of boring. Extent of boring, Factors controlling spacing<br>and depth of bore holes, Spacing and depth of various Civil engineering<br>structures. | 12               |
| SECTION-II  | Stabilization of bore holes, Different method of stabilization of the bore holes, their relative merits and demerits.                                                                                                                                                                                                                                                                                                | 10               |
| SECTION-III | Sampling: Source of disturbance and their influence, Type of sampler,<br>Principle of design of sampler, Representative and undisturbed sampling in<br>various types of soils, Surface sampling, Amount of sampling, Boring and<br>sampling record, Preservation and shipment of sample preparation of bore<br>log                                                                                                   | 10               |
| SECTION-IV  | Penetration tests, Standard penetration tests, Dynamic cone penetration tests<br>with and without bentonite slurry, Static cone penetration tests, factor<br>affecting the penetration tests, Fields Tests: Wash boring, Percussion boring,<br>Standard penetration test, Dynamic cone penetration tests with and without<br>bentonite mud slurry. Static cone penetration test, Surface sampling                    | 10               |

#### **Course Outcome:**

| CO1 | Students would able to identify the objects of site investigation and describe the use of different types of samples and samplers |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Students would understand the process of soil exploration by different boring methods                                             |
| CO3 | Students shall be able to perform standards penetration test, static and dynamic cone penetration                                 |
|     | test                                                                                                                              |
| CO4 | Students will capable of carrying out plate load test, pressurement test, using piezometer, slope                                 |
|     | inclinometer                                                                                                                      |

- 1. Hvorsler M. "Subsurface exploration and sampling of soil for Civil Engg. Purposes, 2<sup>nd</sup>Edition, 2010.
- 2. Simon and Cayton" Site investigation", 2<sup>nd</sup> Edition, 1995.



### **Program Name: M.Tech Civil Engineering Program Code: CIV-401**

#### SUBJECT TITLE: SOIL DYNAMICS AND MACHINE FOUNDATION **SUBJECT CODE: MTCE-126 SEMESTER: II CONTACTHOURS/WEEK:** ]

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

**Internal Assessment: 40** End Term Exam: 60 **Duration of Exam; 3 Hrs** 

#### Objective

The present course is aimed to bring out the advanced theories and practical knowledge of soil dynamics. Each topic will be attempted to develop in logical expression.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contact<br>Hours |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction: Nature of dynamic loads, Stress conditions on soil, Elements under E.Q. loading, Theory of vibrations.                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| SECTION-II  | Dynamic Earth Pressure Problem and Retaining wall: Behavior of Retaining<br>Walls during Earth Quakes Modification of Coulomb's Theory, Modified<br>Coulomb's construction, Analytic solution for c- soils, Indian standard code<br>of Practice                                                                                                                                                                                                                                                                                       | 12               |
| SECTION-III | Dynamic Bearing Capacity: General, Failure Zones & Ultimate Bearing<br>capacity criteria for satisfactory action of footing, Earthquake load on<br>footing, Dynamic analysis for vertical loads.                                                                                                                                                                                                                                                                                                                                      | 6                |
| SECTION-IV  | Liquefaction of Soils: Theory, Criterion of Liquefaction, Factor Affecting,<br>Laboratory study on liquefaction in Triaxial shear and oscillatory simple<br>shear, evaluation of liquefaction Potential, Vibration Table studies,<br>Liquefaction behavior of dense sands. M/C Foundations: Introduction,<br>Criteria for satisfactory M/C foundation, Methods of analysis, Degree of<br>freedom of a Block, I.S. for design of reciprocation M/C design Procedure<br>for Block Foundation, Vibration Isolation & Screening of Waves. | 12               |

#### **Course Outcome:**

| CO1 | Calculate the dynamic properties of soil & perform relevant tests in laboratory |
|-----|---------------------------------------------------------------------------------|
| CO2 | To perform an equivalent-linear site response analysis                          |
| CO3 | Evaluate the liquefaction potential using simplified methodology                |
| CO4 | Recognize & differentiate between the conventional behaviour                    |

Recommended Books: Parkash S. "Soil Dynamics" Leonards " Foundation Engineering" 2<sup>nd</sup> Edition,2011.



Program Name: M.Tech Civil Engineering

Program Code: CIV-401

SUBJECT TITLE: DESIGN OF ROAD PAVEMENT SUBJECT CODE: MTCE-127

### SEMESTER: II

**CONTACTHOURS/WEEK:** 

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

The present course is designed to choose appropriate pavement quality control test, and quantify construction variability

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact<br>Hours |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Pavement Types: Definition, highway and airport pavement comparison, wheel loads, tyre pressure, Contact pressure, design factors. Type of                                                                                                                                                                                                                                                                                                                                                                  | 12               |
|             | distresses structural and functional, serviceability                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| SECTION-II  | Stresses in Flexible: Layered system concept, multilayered solutions.<br>Burmister's method, Fundamental design concepts. Stresses in Rigid<br>Pavements: Relative stiffness of slabs. Modulus of subgrade reaction.<br>Stresses due to warping, stresses due to friction, effect of warping,<br>contraction and expansion. Plain versus reinforced pavements, stresses in<br>dowel bar, tie bar, combined stresses.                                                                                        | 12               |
| SECTION-III | Design of Flexible Pavements: Design factors. Design wheel load.<br>Equivalent single wheel load. Difference between airport and highway<br>design concept. Different design methods. CBR, GI, Triaxial method,<br>McLeod method. Design of Rigid Pavement: General design considerations.<br>Design of joints in cement concrete pavements, spacing of expansion joint,<br>spacing of contraction joints. Design of dowel bar. Design of tie bar. IRC<br>recommendations for design of concrete pavements. | 12               |
| SECTION-IV  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12               |

#### **Course Outcome:**

| CO1 | Identify the factors affecting the design and performance of diverse types of highway |
|-----|---------------------------------------------------------------------------------------|
| CO2 | Evaluate the stresses and strain at various locations of flexible and rigid pavements |
| CO3 | Designing flexible and rigid pavements applying various methods                       |
| CO4 | Designing longitudinal and transverse joints in rigid and flexible pavements          |

- 1. Principles of Transportation Engineering by Chakroborty& Das, Prentice Hall, India, 2<sup>nd</sup> Edition, 2011.
- 2. Highway Engg by S. K. Khanna& C.E.G. Justo, New Chand Bros., Roorkee, 10th Edition, 2015.
- 3. Principles of Pavement Design, by Yoder E.J. and Witczak M.W., 2<sup>nd</sup> Edition, 2010.
- 4. Principles and Practice of Highway Engg., byL.R.Kadiyali, 10th Edition, 2011



Program Name: M.Tech Civil Engineering

Program Code: CIV-401

SUBJECT TITLE: ADVANCE MATERIAL TESTING LAB

SUBJECT CODE: MTCE-131 SEMESTER: II

CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 0          | 0           | 4                   | 2         |

**Internal Assessment: 100** 

#### Objective

To evaluate functional response characteristics of in-service pavement materials

#### **Contents of Syllabus:**

| Contents                                                                      | Contact<br>Hours |
|-------------------------------------------------------------------------------|------------------|
| Tests on bitumen                                                              | 40               |
| 1. Penetration test                                                           |                  |
| 2. Flash and fire point test                                                  |                  |
| 3. Ductility test                                                             |                  |
| 4. Softening point test5.Marshal test                                         |                  |
| Tests on aggregates                                                           |                  |
| 1. Shape tests - Elongation, Flakiness Index & Combined Index                 |                  |
| 2. Aggregate impact value test                                                |                  |
| 3. Los angeles abrasion value test                                            |                  |
| 4. Specific gravity & Water absorption testField Tests                        |                  |
| 1. Field density by sand replacement & Core cutter method                     |                  |
| 2. Bitumen Extraction, bitumen content and aggregate gradation Effect of      |                  |
| water/cement ratio on workability and strength of concrete Study of MixDesign |                  |
| Methods using admixtures.                                                     |                  |
|                                                                               |                  |
|                                                                               |                  |

#### **Course Outcome:**

| CO1 | Apply this knowledge to mix design philosophy to get different grade of concrete             |
|-----|----------------------------------------------------------------------------------------------|
| CO2 | Student should be able to test of different concrete property to specify quality of concrete |
| CO3 | Acquired the expertise to conduct various tests on soil, aggregates, cement and concrete     |
| CO4 | Estimate structural response characteristics of in-service pavements.                        |



SUBJECT TITLE: LAB-2 (ADVANCED ENVIRONMENT LAB)

#### SUBJECT CODE: MTCE-132 SEMESTER: II

**CONTACTHOURS/WEEK:** 

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 0          | 0           | 4            | 2         |

#### **Internal Assessment: 100**

#### **Objective:**

This course is designed to complete physical, chemical and bacteriological analysis of waste water. Air quality monitoring.

#### **Contents of Syllabus:**

| Contents                                                                                                                                                                                 | Contact Hours |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. Monitoring of ambient air quality for total suspended particulate.<br>2. Measurements of $SO_2$ and $NO_x$ in ambient air.                                                            | 40            |
| <ol> <li>Detection of levels of noise pollution in residential/commercial/industrialand silent/sensitive areas</li> <li>Field visit of Industrial/wastewater treatment plant.</li> </ol> |               |

#### **Course Outcome:**

| CO1 | Students will able to develop environmental scientists and engineers and sensitize them towards environmental issues.    |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| CO2 | Students will able to acquire analytical skills in assessing environmental impacts through a multidisciplinary approach. |
| CO3 | Students will able to identify environmental problems and solutions through organized research.                          |
| CO4 | Students will able to improve the communication and writing skill so as to face the competitive                          |
|     | world                                                                                                                    |

#### **Suggested Books:**

1. Metcalf & Eddy, Inc., Waste water Engineering Treatment and Reuse, 2<sup>nd</sup> Edition, 2003.

2 .Air pollution: its origin and control by Kenneth Wark, Cecil Francis Warner, Wayne T. Davis, 3<sup>rd</sup> Edition, 1997



#### SUBJECT TITLE: ADVANCE SOIL TESTING LAB SUBJECT CODE: MTCE-133 SEMESTER: II CONTACTHOURS/WEEK: Lecture(L)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 0          | 0           | 4                   | 2         |

#### **Internal Assessment:**

#### 100Objective

To inculcate the adequate knowledge among students in assessing index properties, compaction, CBR, Compressibility, Swell characteristics and permeability of soils by conducting laboratory tests

#### **Contents of Syllabus:**

| Contents                                                                            | Contact Hours |
|-------------------------------------------------------------------------------------|---------------|
| 1. Determination of in-situ density by Sand replacement method.                     | 40            |
| 2.Determination of in-situ density by core cutter method                            |               |
| 3. Determination of Liquid Limit & Plastic Limit.                                   |               |
| 4. Determination of specific gravity of soil solids by pyconometer method.          |               |
| 5. Compaction test of soil.                                                         |               |
| 6. Determination of Relative Density of soil.                                       |               |
| 7. Determination of permeability by Constant Head Method.                           |               |
| 8. Determination of permeability by Variable Head method.                           |               |
| 9. Unconfined Compression Test for fine grained soil.                               |               |
| 10. Direct Shear Test                                                               |               |
| 11. Triaxial Test                                                                   |               |
| 12. Grain size analysis of sand and determination of uniformity coefficient(Cu) and |               |
| coefficient of curvature (Cc).                                                      |               |

#### **Course Outcome:**

| CO1 | Students will able to analyze data from auger boring                                 |
|-----|--------------------------------------------------------------------------------------|
| CO2 | Students will able to analyze the data from plate load test                          |
| CO3 | Students will able to analyze the data from static and dynamic cone penetration test |
| CO4 | Students will able to analyze the data from sub soil investigation tests             |

#### Suggested Books:

Soil Testing Engineering ,manual By Shamsher Prakash and P.K.Jain.Nem Chand &Brothers.



**Program Name: M.Tech Civil Engineering** 

Program Code: CIV-401

#### SUBJECT TITLE: SOLID MECHANICS SUBJECT CODE: MTCE-140 SEMESTER:I CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

To understand failure criteria and numerical methods for understanding the analysis of material properties.

#### **Contents of Syllabus:**

| Sr.No       | Conten                                                                                                                                                                                                                                                                            |       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             | ts                                                                                                                                                                                                                                                                                | Hours |
| SECTION-I   | Theory of stress, state of stress in a body. Differential equations of equilibrium                                                                                                                                                                                                | 16    |
| SECTION-II  | Analysis of state of stress at a given point in a body, geometrical<br>theoryof strains, displacement components and strain components and<br>relation between them, generalized hooks law, strains expressed in<br>terms of<br>stresses, stresses expressed in terms of strains. | 16    |
| SECTION-III | Torsion of prismatic bars and bending.                                                                                                                                                                                                                                            | 8     |
| SECTION-IV  | Saint-venant method, three dimensional stress systems, tensors, unsymmetrical bending.                                                                                                                                                                                            | 8     |

#### **Course Outcome:**

| CO1 | Develop stress and strain tensors and perform transformations                               |
|-----|---------------------------------------------------------------------------------------------|
| CO2 | Analyze stress-strain relationships for materials in elastic state.                         |
| CO3 | Solve problems of linear elasticity using boundary value concept                            |
| CO4 | Analyze problems of plasticity and behavior of visco-elastic materials using various models |

#### **Recommended Books:**

1. Theory of elasticity- S.Timoshenko (2010)

- 2. Theory of elasticity-M.Filonenko (1972)
- 3. Solid mechanics-S.H. Crandall (2006)



#### SUBJECT TITLE: DISASTER MANAGEMENT SUBJECTCODE: MTCE-141 SEMESTER: I CONTACTHOURS/WEEK: Lecture(L

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

To understand the various aspects of disaster mitigation and management.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction to Disaster Management: Define and describe disaster, hazard,<br>emergency, vulnerability, risk and disaster management; Identify and describe the<br>types of natural and non-natural disasters. Important phases of Disaster Management<br>Cycle.<br>Disaster Mitigation and Preparedness: Natural Hazards: causes, distribution pattern,<br>consequences and mitigation measures for earth quake, tsunami, cyclone, flood,<br>landslide drought etc.<br>Man-made Hazards: causes, consequences mitigation measures for various                                                                                                                                         | 12               |
|             | industrial hazards/disasters, preparedness for natural disasters in urbanareas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| SECTION-II  | Hazard and Risk Assessment: Assessment of capacity, vulnerability and risk, vulnerability and risk mapping, stages in disaster recovery and associated problems.<br>Emergency Management Systems (EMS): Emergency medical and essential public health services, response and recovery operations, reconstruction and rehabilitation.                                                                                                                                                                                                                                                                                                                                                   | 12               |
| SECTION-III | Capacity Building: Gender sensitive disaster management approach and inculcate new skills and sharpen existing skills of government officials, voluntary activists, development of professional and elected representative for effective disaster management, role of media in effective disaster management overview of disaster management in India, role of agencies like NDMA, SDMA and other International agencies, organizational structure, role of insurance sector, DM act and NDMA guidelines.                                                                                                                                                                              | 12               |
| SECTION-IV  | Application of Geo-informatics and Advanced Techniques: Use of Remote Sensing<br>Systems (RSS) and GIS in disaster Management, role of knowledge based expert<br>systems in hazard scenario, using risks-time charts to plan for the future, early<br>warning systems.<br>Integration of public policy: Planning and design of infrastructure for disaster<br>management, community based approach in disaster management, methods for<br>effective dissemination of information, ecological and sustainable development<br>models for disaster management.<br>Case Studies: Lessons and experiences from various important disasters with specific<br>reference to civil engineering. | 12               |



#### **Course Outcome:**

| CO1 | Students will able to provide basic conceptual understanding of disasters.                      |
|-----|-------------------------------------------------------------------------------------------------|
| CO2 | Students will able to understand approaches of Disaster Management                              |
| CO3 | Students will able to build skills to respond to disaster                                       |
| CO4 | Students will able to apply methods of community involvement as an essential part of successful |
|     | DRR.                                                                                            |

#### **Recommended Books:**

1. Natural Disaster management, Jon Ingleton (Ed), Published by Tudor Rose, Leicester (2013)

2. Disaster Management, R.B. Singh (Ed), Rawat Publications (2006)



#### SUBJECT TITLE: CONSTRUCTION AND MAINT. MGMT. SUBJECTCODE: MTCE-142 SEMESTER: CONTACTHOURS/WEEK: Lecture(L) Tutoria

| Lecture(L) | Tutorial(T) | Practical(P)            | Credit(C) |
|------------|-------------|-------------------------|-----------|
| 3          | 1           | 0                       | 4         |
|            |             | Internal Assessment: 40 |           |

End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

This is a professional subject concerned with the planning, design, construction, and management of infrastructures and socio-economic parameters.

#### **Contents of Syllabus:**

| Sr.No       | Conten                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             | ts                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hours |
| SECTION-I   | Services in Residential, commercial and medical buildings (A)<br>Sanitation, water supply, electric wiring, rain water disposal, lighting &<br>illumination, calculation methods for these services (B) Air<br>Conditioning& ventilation: Natural ventilation, control cooling systems,<br>modern systems of air conditioning, ducting Systems, different<br>mechanical means of air conditioning. (C) Fire Safety Dye.(D) Thermal<br>Insulation |       |
| SECTION-II  | Architectural controls and building byelaws: Role of building byelaws in acity, local byelaws and architectural controls, facade control and zoning plans.                                                                                                                                                                                                                                                                                       |       |
| SECTION-III | Regional planning: Understanding of physical, social and economic parameters for regional planning.                                                                                                                                                                                                                                                                                                                                              |       |
| SECTION-IV  | Landscaping: Forces of man and nature, their relationship and effect on shaping landscape, site analysis.                                                                                                                                                                                                                                                                                                                                        |       |

#### **Course Outcome:**

| CO1 | Students will be able to make them understand the concepts of Project Management for planning    |
|-----|--------------------------------------------------------------------------------------------------|
|     | to execution of projects                                                                         |
| CO2 | Students will be able to make them understand the feasibility analysis in Project Management and |
|     | network analysis tools for cost and time estimation                                              |
| CO3 | Students will be able to enable them to comprehend the fundamentals of Contract Administration,  |
|     | Costing and Budgeting.                                                                           |
| CO4 | Students will be able toto analyze, apply and appreciate contemporary project management tools   |
|     | and methodologies in Indian context.                                                             |

#### **Recommended Books:**

NA



# SUBJECT TITLE: COMPUTER AIDED DESIGN METHODS SUBJECTCODE: MTCE-143 SEMESTER: II CONTACTHOURS/WEEK: Lecture(L) Tutorial(

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

# Objective

To enhances the utilization of computer systems to assist in the creation, modification, analysis, or optimization of a design.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                        | Contact<br>Hours |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Computer Aided Design: Introduction, computer graphics, geometric<br>modeling, Three dimensional graphics, raster graphic fundamentals,<br>computer aided linkage displays and synthesis, interactive acceleration<br>Analysis.                                                                                 | 8                |
| SECTION-II  | Programming using matrix methods of structural analysis: Assembly of matrices, solution of equilibrium equations, flow charts                                                                                                                                                                                   |                  |
| SECTION-III | Interactive computer programming: Computer programs for design of<br>simple civil engineering structural elements. Expert System in<br>Engineering: Introduction, history, advantages and limitations of expert<br>systems. Components of expert systems: Knowledge base, inference<br>Engine, user'sinterface. | 16               |
| SECTION-IV  | Development of expert systems: Problem formulation, application to<br>engineering analysis &design consideration and operations, representative<br>applications in civil engineering.                                                                                                                           | 6                |

# **Course Outcome:**

| CO1 | Formulate relevant research problems, conduct experimental or analytical study with modern &       |
|-----|----------------------------------------------------------------------------------------------------|
|     | scientific methods and use of software tools                                                       |
| CO2 | Design and validate technological solutions to defined problems and communicate clearly            |
| CO3 | Review and document the knowledge developed by scholar predecessor and critically assess the       |
|     | relevant technologies issues                                                                       |
| CO4 | Students will be able to develop solutions or to do research in the areas of design and simulation |
|     | in mechanical engineering                                                                          |

- 1. "Matrix Analysis of Framed Structures" by William Weaver. (2004)
- 2. "Introduction to Expert Systems" by Jackson, P. (1998)
- 3. "A guide to Expert Systems" Waterman, D.A. (2002)



#### SUBJECT TITLE: HIGH RISE BUILDINGS SUBJECTCODE: MTCE-144 SEMESTER: III CONTACTHOURS/WEEK: Lectur

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

#### Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

To introduce the fundamental concepts relevant to different approach of high rise building design method.

#### **Contents of Syllabus:**

| Sr.No                                                                                                                                                                                                                                                                                                                     | Contents                                                                                                                                                                                                                                                                                                                      | Contact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               | Hours   |
| SECTION-I                                                                                                                                                                                                                                                                                                                 | Tall building systems and concepts: Environmental systems. Service<br>systems, construction system, foundation design, architectural- structural<br>interaction. Tall building criteria and loading gravity load. Earthquake<br>loadings, wind loading and effects, fire and blast, quality control crib<br>structural safety | 12      |
| SECTION-II                                                                                                                                                                                                                                                                                                                | Structural design of tall steel buildings: Commentary on structural<br>standards, elastic analysis and design. Plastic analysis and design, stability.<br>Design methods based on stiffness, fatigue and fracture, load factor (Limit<br>State) design.                                                                       |         |
| Structural design of tall concrete and masonry buildings: Commentary<br>structural standards, plastic analysis-strength of members and correction,<br>non-linear analysis and limit design, stability, stiffness and crack control<br>creep shrinkage and temperature effects. Limit state design, masonry<br>structures. |                                                                                                                                                                                                                                                                                                                               | 13      |
| SECTION-IV                                                                                                                                                                                                                                                                                                                | Frame-shear wall systems: Twist of frame. Analysis of shear wall, frame wall interaction, analysis of coupled shear wall, computation of earthquake load dynamic analysis of tall building.                                                                                                                                   | 4       |

#### **Course Outcome:**

| CO1 | Plan tall buildings considering structural systems, fire rating, local considerations etc. |
|-----|--------------------------------------------------------------------------------------------|
| CO2 | Evaluate loading for tall structures                                                       |
| CO3 | Analyze and design of tall structural systems including structural connections             |
| CO4 | Analyze tube-in-tube construction and 3-dimensional analysis of shear core building        |

#### **Recommended Books:**

1. Structural Analysis and design of Tall Buildings by Tara NathBungale (2011)

2. Advances in tall buildings by Beedle L.S. (2007)

3. Experimental design, Theory & application, Federer, Oxford & IBH pub Co. (1955)



## SUBJECT TITLE: COMPOSITE MATERIALS SUBJECT CODE: MTCE-145 SEMESTER: III CONTACTHOURS/WEEK: Lecture (]

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 3           | 1            | 0             | 4          |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

#### Objective

This course is designed to describe the basic understanding of the design requirements for advanced concrete.

## **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hours |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | ECTION-I<br>Supplementary cementing materials: Types of supplementary cementing<br>materials such as fly ash, silica fume, rice husk ash, and meta kaolin; their<br>physical, chemical, mineralogical properties, effects of these materials on<br>the fresh properties, strength properties, durability properties.<br>Fiber Reinforced Concrete: Definition, types of fibers, properties of fibers,<br>factors affecting FRC, mixing and casting procedure, composite materials<br>approach, effect of fibers on the workability, strength and durability of<br>concretes and applications of different types of fibers                                                                                                                                                          |                  |
| SECTION-II  | High volume fly ash concrete: Definition, effect of types of fly ash in large<br>quantities on the strength properties of concrete, durability and abrasion<br>resistance of HVFA, applications of HVFA.<br>Self-compacting concrete (SCC): Definition, advantages and<br>disadvantages of SCC, various mix design procedures, tests for SCC;<br>applications for SCC                                                                                                                                                                                                                                                                                                                                                                                                              | 10               |
| SECTION-III | Behavior of concrete at high temperature: Definition of high temperature,<br>mechanism of concrete failure at high temperature, spalling characteristics,<br>difference in the behavior of normal concrete, high strength concrete and<br>self-compacting concrete at high temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                |
| SECTION-IV  | <ul> <li>High performance concrete: Definition of HPC, material selection and its properties, parameters for concrete being considered as HPC, applications of HPC.</li> <li>Polymer Concrete Composites: Definition, types of monomers and polymers, types of polymer concretes and their applications.</li> <li>Fiber reinforced plastics (FRP): Types of FRP, their properties and effects on concrete elements under various loading conditions.</li> <li>Use of waste materials and by-products: Types of waste materials and by-products such as waste glass, scrap tires, waste foundry sand, clean coal ash, etc. Effect of these materials on the various properties of mortar and concrete, introduction of leachates from waste materials and their analysis</li> </ul> | 19               |



## **Course Outcome:**

| CO1 | Identify, describe and evaluate the properties of fibre reinforcements, polymer matrix materials |
|-----|--------------------------------------------------------------------------------------------------|
|     | and commercial composites.                                                                       |
| CO2 | Analyse the elastic properties and simulate the mechanical performance of composite laminates;   |
|     | and understand and predict the failure behaviour of fibre-reinforced composites                  |
| CO3 | Apply knowledge of composite mechanical performance and manufacturing methods to a               |
|     | composites design project                                                                        |
| CO4 | Critique and synthesise literature and apply the knowledge gained from the course in the design  |
|     | and application of fibre-reinforced composites.                                                  |

# **Recommended Books:**

1. Nevelli, A. M., Properties of Concrete, Prentice Hall of India (1995). Siddique, R.,

SpecialStructuralConcretes

Galgotia Publications (2000). Krishna Raju, N., Concrete Mix Design, CBS Publications (2002).
 Concrete Technology, Tata-McGraw Hill, 3rd Edition (2008).



# SUBJECT TITLE: PAVEMENT MANAGEMENT SYSTEM SUBJECTCODE: MTCE-147 SEMESTER: III CONTACTHOURS/WEEK: Lecture(L) Tutori

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

## Objective

To evaluate and Prioritize pavement maintenance strategies and surface conditions.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                              | Contact<br>Hours |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction pavement management systems components of pavement<br>management systems, pavement conditions survey and ratings                                                                                                         | 10               |
| SECTION-II  | Pavement performance prediction Concepts, modeling techniques,<br>comparison of different deterioration models highway development and<br>management tools rehabilitation budget planning, ranking and<br>optimization methodologies. | 12               |
| SECTION-III | Alternate pavement design strategies and economic evaluation, reliability concepts in pavement engineering, life cycle costing.                                                                                                       | 11               |
| SECTION-IV  | Road asset management, pavement preservation programs, expert systems and pavement management.                                                                                                                                        | 10               |

## **Course Outcome:**

| CO1 | Assess pavement surface conditions and evaluate it.                                     |
|-----|-----------------------------------------------------------------------------------------|
| CO2 | Estimate the structural stability of pavements using various tests.                     |
| CO3 | Demonstrate the ability to discuss pavement management system models and methodologies. |
| CO4 | Assess pavement surface conditions and evaluate it.                                     |

#### **Recommended Books:**

1. Haas, R., W.R. Hudson, and J.P. Zaniewski, "Modern Pavement Management", Krieger Press(2001)

2. Yoder E.J. and Witezak, "Principles of Pavement Design," John Wiley & Sons (1975)

3. Shahin M.Y. "Pavement Management for Air Port, Roads and Parking Lots", Chapman and Hall/Springer (1994)



# SUBJECT TITLE: LAND USE & REGIONAL TPT. PLANNING SUBJECT CODE: MTCE-146 SEMESTER: I CONTACTHOURS/WEEK: Lecture(L) Tutorial(T

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment:40 End Term Exam: 60 Duration of Exam; 3 Hrs

# Objective

The present course is designed to delineate regions for transportation planning.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                         | Contact<br>Hours |
|-------------|--------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Urbanization; urban forms and structures, Delineation of regions ,Land use transportation models | 13               |
| SECTION-II  | Transit oriented land use planning ,Regional and intercity travel demand estimation              | 11               |
| SECTION-III | Freight travel demand modeling, Regional network planning                                        | 10               |
| SECTION-IV  | Policy formulation and evaluation                                                                | 10               |

## **Course Outcome:**

| CO1 | Basic understanding of what transportation planning is, its theoretical backgrounds and       |
|-----|-----------------------------------------------------------------------------------------------|
|     | applications.                                                                                 |
| CO2 | Skill for collecting data about travel behaviour and analyzing the data for use in transport  |
|     | planning.                                                                                     |
| CO3 | Ability to understand the important concepts about public transport system.                   |
| CO4 | Ability to work in team and communicate with others effectively for transport related topics. |

- 1. Blundon, W. R. and J Black, The Land Use Transport System, 2nd Edition, AustralianNatlUnivPress
- 2. Eric Koomen and Judith Borsboom-van Beurden, Land-Use Modelling in Planning Practice(GeoJournal Library), 1st Edition, Springer



# SUBJECT TITLE: PAVEMENT MANAGEMENT SYSTEM

#### SUBJECT CODE: MTCE-147 SEMESTER: III CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

# Objective

To describe the process of Pavement Performance like Roughness & Structural evaluation.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                              | Contact<br>Hours |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction Pavement Management Systems; Components of pavement<br>management systems Pavement conditions survey and ratings                                                                                                         | 10               |
| SECTION-II  | Pavement performance prediction Concepts, modeling techniques,<br>Comparison of different deterioration models Highway Development and<br>Management tools Rehabilitation budget planning; Ranking and<br>optimization methodologies. | 12               |
| SECTION-III | Alternate pavement design Strategies and economic evaluation, Reliability concepts in pavement engineering; life cycle costing.                                                                                                       | 11               |
| SECTION-IV  | Road asset management, pavement preservation programs, Expert systems and pavement management.                                                                                                                                        | 10               |

# **Course Outcome:**

| CO1 | Assess pavement surface conditions and evaluate it.                                     |
|-----|-----------------------------------------------------------------------------------------|
| CO2 | Estimate the structural stability of pavements using various tests.                     |
| CO3 | Demonstrate the ability to discuss pavement management system models and methodologies. |
| CO4 | Assess pavement surface conditions and evaluate it.                                     |

- 1. Haas, R., W.R. Hudson, and J.P. Zaniewski, "Modern Pavement Management",
- 2. Krieger Press Yoder E.J. and Witezak, "Principles of Pavement Design," JohnWiley & Sons
- 3. Shahin M.Y. "Pavement Management for Air Port, Roads and Parking Lots", Chapman and Hall/Springer



# SUBJECT TITLE: TRANSPORT SYSTEM PLANNING AND MANAGEMENT SUBJECT CODE: MTCE-148

SEMESTER: III

**CONTACTHOURS/WEEK:** 

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

# **Objective :**

To understand and propose appropriate transportation technology to solve real-life traffic problems.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact<br>Hours |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | <b>N-I</b> General Importance of transportation, transportation planning methodology, hierarchical levels of planning and its relation to rural, urban areas. Long range planning, Passenger and goods transportation, General concept and                                                                                                                                                                                                                  |                  |
|             | process of transport planning, Land-use transport interactions, Socio-<br>economic characteristics of Land use                                                                                                                                                                                                                                                                                                                                              |                  |
| SECTION-II  | Transportation Systems Multi modal transportation system; Characteristics<br>of Mass Transit systems including technical, demand operational and<br>economic problems, fixed Track Facility, Mass Rapid Transit System-<br>Elevated, Surface and Underground construction, Express Bus System,<br>integrated Operating Characteristics of Terminal and Transfer facilities                                                                                  | 8                |
| SECTION-III | Urban Transportation Planning Studies Urban Travel Characteristics, Private<br>and Public Behavior analysis, Transportation demand Surveys, Delineation<br>of the urban area, zoning, Origin-Destination Studies, Home Interviews, trip<br>Classification and Socio- Economic variables in trip making projections                                                                                                                                          | 12               |
| SECTION-IV  | Planning Methodology and Systems analysis Study of existing network-trip<br>generation techniques, Category analysis, multiple regression techniques,<br>Modal split analysis, Trip distribution techniques, Growth Factor model,<br>Gravity models, Opportunity models and multiple regression models, Traffic<br>assignment methods, Minimum Path tree-All or nothing assignment and<br>capacity restraint techniques, analysis and evaluation techniques | 14               |

# **Course Outcome:**

| CO1   | Basic understanding of what transportation planning is, its theoretical backgrounds and applications. |
|-------|-------------------------------------------------------------------------------------------------------|
| ~ ~ ~ |                                                                                                       |
| CO2   | Skill for collecting data about travel behaviour and analyzing the data for use in transport          |
|       | planning.                                                                                             |
| CO3   | Ability to understand the important concepts about public transport system.                           |
| CO4   | Ability to work in team and communicate with others effectively for transport related topics.         |

- 1. Kadiyali, L. R., Traffic Engineering and Transport Planning, KhannaPublishers
- 2. Highway Engg.-Khanna S.K. and Justo C. E. G. New ChandPublication
- 3. C A O'Flaherty, "Transport Planning and Traffic Engineering", Butterworth Heinemann, Elsevier, Burlington, MA



# SUBJECT TITLE: HYDROLOGY AND WATER HARVESTING SUBJECT CODE: MTCE-149 SEMESTER: I CONTACTHOURS/WEEK: Lecture(L) Tutorial(T)

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3Hrs

#### Objective

To identify, formulate, and solve groundwater engineering problems.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                        | Contact<br>Hours |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Water, Nature & Properties, Water Sources their Management, Ground Water, Movement Nature                                                                       | 5                |
| SECTION-II  | Geological Activity, Streams & Drainage, Depositional Features, Glacier,<br>Ocean, Topography & Circulation Shapin                                              | 7                |
| SECTION-III | Water Harvesting, Canals, Barrage & Dams, Environmental<br>Impacts & Economics, Rain Water Management, Rain Water<br>Harvesting Techniques                      | 8                |
| SECTION-IV  | Atmospheric Water, Water Estates & Heat, Cloud, Foe, Thunder<br>Storms, Orographic Precipitation, Global Balances of Energy &<br>Water, Pollution Dome & Plume. | 10               |

# **Course Outcome:**

| CO1 | Students will be able to study occurrence movement and distribution of water that is a prime    |
|-----|-------------------------------------------------------------------------------------------------|
|     | resource for development of a civilization.                                                     |
| CO2 | Students will be able to know diverse methods of collecting the hydrological information, which |
|     | is essential, to understand surface and ground water hydrology                                  |
| CO3 | Students will be able to know the basic principles and movement of ground water and properties  |
|     | of groundwater flow.                                                                            |
| CO4 | Students will be able to                                                                        |

- 1. Hydrology and Water Resources Engineering , K.CPatra
- 2. Elements of Water Resources Engineering, K.N.Duggal
- 3. Irrigation and Water Resources Engineering, G.LAsawa
- 4. Modern Hydrology and Sustainable Water Development, S.KGup



Program Name: M.Tech Civil Engineering

Program Code: CIV-401

# SUBJECT TITLE: ENERGY THROUGH WATER UTILIZATION SUBJECT CODE: MTCE-150 SEMESTER: III CONTACTHOURS/WEEK: Lecture(L) Tutorial(T)

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

# **Objective:**

To determine likely rock mass behaviors under different excavation and loading conditions and propose mitigation solutions.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                               | Contact<br>Hours |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | <ul> <li>Bioenergy, Future Supply in Developing Countries, Energy Planning,</li> <li>Energy Technologies and Development. Observations on Producer Gas</li> <li>Development with Particular Reference to Thailand.</li> </ul>                                          |                  |
| SECTION-II  | Biomass Utilization in India, Stoves and Kilns, A Study of Ethanol<br>Production in Kenya. The Economics of Bioenergy in Developing<br>Countries, A forestation and Public Participation.                                                                              | 7                |
| SECTION-III | Bioenergy Research and Development in Developing countries. Energy by<br>Rice Husk utilization Energy Conversion Considerations, Burning in a<br>Controlled Atmosphere, Destructive Distillation, Pyrolysis, Gasification –<br>Producer Gas, Other Chemicals.          | 8                |
| SECTION-IV  | Thermo chemical and Biochemical Processes, Physical and<br>Chemical Characteristics of Rice Husk, Use of Rice Husk as Fuel,<br>Processes Using Husk as an Energy Source, Equipment and<br>Machinery to Convert Rice-Husk to Energy and for other related<br>Functions. | 10               |

# **Course Outcome:**

| CO1 | Apply concepts of stress, strain, elasticity and plasticity to intact rock and rock masses.   |
|-----|-----------------------------------------------------------------------------------------------|
| CO2 | Collect rock mechanics data in the field, combine it with laboratory test data and assess the |
|     | stability of excavations in rock.                                                             |
| CO3 | Determine likely rock mass behaviors under different excavation and loading conditions and    |
|     | propose mitigation solutions.                                                                 |
| CO4 | Apply concepts of stress, strain, elasticity and plasticity to intact rock and rock masses.   |

- 1. Energy Conservation Through Effective Energy Utilization: Jesse C. Denton, Stephen Webber, John E. Moriarty –1976
- 2. HandbookofWaterandEnergyManagementinFoodProcessing:JiriKlemes,RobinSmith,Jin-Kuk Kim -2008
- 3. Renewable Energy in the Middle East: Michael Mason, AmitMor –2009



# SUBJECT TITLE: ENVIRONMENTAL STANDARD AND LAWS SUBJECT CODE: MTCE-151 SEMESTER: III CONTACTHOURS/WEEK: Lecture(L) Tutorial(T)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

#### Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

# Objective

The objective of this course is to acquaint the students with the environmental issues, pollution and control and the measures taken for its protection along with the norms prevailing at international and national level

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact<br>Hours |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction : Indian Constitution and Environmental Protection – National<br>Environmental policies – Precautionary Principle and Polluter Pays Principle<br>– Concept of absolute liability – multilateral environmental agreements and<br>Protocols – Montreal Protocol, Kyoto agreement, Rio declaration –<br>Environmental Protection Act, Water (P&CP) Act, Air (P&CP) Act –<br>Institutional framework (SPCB/CPCB/MOEF)                               | 12               |
| SECTION-II  | Water (P &Cp) Act, 1974: Power & functions of regulatory agencies -<br>responsibilities of Occupier, Provision relating to prevention and control,<br>Scheme of Consent to establish, Consent to operate – Conditions of the<br>consents – Outlet – Legal sampling procedures, State Water Laboratory –<br>Appellate Authority – Penalties for violation of consent conditions etc.<br>Provisions for closure/directions in apprehended pollution situation. | 12               |
| SECTION-III | Environment (Protection) Act 1986: Genesis of the Act – delegation of powers –<br>Role of Central Government - EIA Notification – Sitting of Industries – Coastal<br>Zone Regulation - Responsibilities of local bodies mitigation scheme etc., for<br>Municipal Solid Waste Management - Responsibilities of Pollution Control<br>Boards under Hazardous Waste rules and that of occupier, authorization –<br>Biomedical waste rules –                      | 12               |
| SECTION-IV  | Fundamentals of Environmental Management and ISO 14000series:<br>Background and development of ISO 14000 series. Environmental<br>management Plans, principles and elements. TheISO 14001- Environmental<br>management systems standard. Environmental law in India: Environmental<br>policy and laws.                                                                                                                                                       | 12               |

#### **Course Outcome:**

| CO1 | Students will be able to enable students to identify core environmental issues and legal and institutional responses to them.                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                         |
| CO2 | Students will be able to analyze the role of judiciary in environmental protection.                                                                                                                     |
| CO3 | Students will be able to understand development of environmental law in an international perspective, specifically developed and developing countries perspective.                                      |
| CO4 | Students will be able to introduce the basic concepts and principles of environmental law and to analyze these principles as tools of environmental protection, where the laws and policies fall short. |

- 1. CPCB, "Pollution Control acts, Rules and Notifications issued there under "Pollution ControlSeries PCL/
- 2. Pares Distn. Environmental Laws in India (Deep, Latededn.)



# SUBJECTTITLE: MANAGEMENT IN ORGANIZATION SUBJECT CODE: MTCE-152 SEMESTER: I CONTACTHOURS/WEEK: Lecture(L) Tute

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

# Objective

To understand the organization and Production Systems and functional units of organization.

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact<br>Hours |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction to organizational management: Nature , scope and complexity,<br>Longitudinal thinking and legacy factor, Theory and majors schools of<br>thought and framework of organizational analysis, Systems contingency<br>approach to organization theory and practice; techniques of organizational<br>diagnosis, Theory of organizational structures - nature and consequence of<br>structure                           | 12               |
| SECTION-II  | Impact of structure, organization change and intervention strategy: Socio-<br>culture dimension of work and behavior. Impact of Environment and<br>cultural variables on organization structure & Style, Organization change &<br>Organization development, Intervention strategies for organization<br>development - Individual, Group & Interpersonal Interventions, Total<br>System Intervention & Stabilizing Change, MBO. | 12               |
| SECTION-III | Environment Analysis & Impact: Automation, Interdependence &<br>Evaluation Issues: Nature of Organizational Processes, Environmental<br>analysis Techniques & impact for organizational growth, Issues of<br>Mechanization, Automation & Computerization, Organization<br>Interdependence, Organization Evaluation.                                                                                                            | 12               |
| SECTION-IV  | Case Studies: Introduction, Objectives of case study, Phases of case study, Steps of case study, Types of case studies.                                                                                                                                                                                                                                                                                                        | 12               |

# **Course Outcome:**

| CO1 | Describe situations where management decision-making should incorporate ethical reasoning, multiculturalism, and internal intergroup behavior. |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Use fundamental management concepts and principles as guides to analyze class environment case incidents.                                      |
| CO3 | Identify many of the factors and forces managers must confront both internal and external to the organization.                                 |
| CO4 | Develop decision making skills under challenging circumstances through the concept of optimization                                             |

## **Recommended Books:**

NICMAR, "Management In Organization", NICMAR



# SUBJECT TITLE: CONSTRUCTION FINANCE MANAGEMENT

#### SUBJECT CODE: MTCE-153 SEMESTER: III

**CONTACTHOURS/WEEK:** 

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 DurationofExam; 3Hrs

## Objective

To study the Role of Government, Private Sector and the Third Sector for Governance of Cities and Regions.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hours |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | <ul> <li>Financial Planning: Long term finance planning, Stock, Borrowings,<br/>Debentures, Loan Capital, Public Deposit, Dividend Policies, Bonus</li> <li>Shares, Market value of shares, Reserves. Over and under capitalization,<br/>Introduction to Micro financing.</li> <li>Budget: Budgetary control system. Types of budgets, Procedure for master<br/>budgets. Budget manual.</li> </ul> |                  |
| SECTION-II  | Corporate Sector: Corporate tax planning, Public policies on ICRA grading<br>of exchange, World financial market, Role of financing institutes in<br>Construction, CIDC-IRA grading of construction entities, Venture Capital<br>Financing- Indian Venture Capital scenario, SEBI regulation.                                                                                                      | 10               |
| SECTION-III | Construction Accounts: Accounting process, preparation of profit and loss<br>account and balance sheet as per the companies Act, 1956, preparation of<br>contract accounts for each project, methods of recording and reporting site<br>accounts between project office and head office, Ratio Analysis. Escrow<br>Account for PPP Project.                                                        | 10               |
| SECTION-IV  | Case Studies: Case studies for 1)BOT 2)Dams 3)Mass Transit<br>System 4)Infrastructure Projects 5)Government Funded Projects<br>with respect to a) Project Appraisal b) Raising of funds c) Cost to<br>complete analysis                                                                                                                                                                            | 10               |

# **Course Outcome:**

| CO1 | Calculate cash flows to determine revenue generation                                              |
|-----|---------------------------------------------------------------------------------------------------|
| CO2 | Analyze technology workflows and describe their efficiencies                                      |
| CO3 | Learn how to calculate the quantity takeoff, labor, and equipment costs for construction projects |
| CO4 | Master financial planning for financing development projects                                      |

- 1. Construction Management & PWD Accounts --- D Lal, S. K. Kataria& Sons, 2012
- 2. Principles of Corporate Finance, Brealey R.A. Tata McGraw Hill, New Delhi, 2003.
- 3. "Financial Management" Indian Institute of Banking and Finance MacmillanPublications.



# SUBJECT TITLE: JOINT VENTURE AND PRIVATIZATION IN INF **SUBJECT CODE: MTCE-154 SEMESTER: III** ] **CONTACTHOURS/WEEK:**

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

**Internal Assessment: 40** End Term Exam: 60 **Duration of Exam; 3 Hrs** 

**Objective:** 

To study the Role of Government, Private Sector and the Third Sector in the Management of Housing.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                       | Contact<br>Hours |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | The joint ventures concept. Motives and kinds of Joint Ventures                                                                                | 12               |
| SECTION-II  | Requirements for Joint Venture project Negotiation and its organization                                                                        | 12               |
| SECTION-III | Arrangement between joint venture partners and kinds of agreements for transfer of technology                                                  | 12               |
| SECTION-IV  | Bilateral investment Treaties and legal framework and settlement of<br>Disputes and Indian Law on Intellectual Property. Joint Ventures abroad | 12               |

# **Course Outcome:**

| CO1 | Evaluate the roles played and sources of support provided by private and government bodies     |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Techniques for assembling information and making qualitative judgments are properly described. |
| CO3 | Tools used to conduct careful quantitative financial analysis are explained thoroughly         |
| CO4 | Techniques for sourcing and enhancing the terms of funding both in domestic and international  |
|     | projects.                                                                                      |

#### **Recommended Books:**

NICMAR, "Joint Venture and Privatisation in Infrastructure Projects", NICMAR



SUBJECT TITLE: EARTHEN EMBANKMENT

# SUBJECT CODE:MTCE-155 SEMESTER: III

**CONTACT HOURS/WEEK:** 

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 DurationofExam; 3hrs

# Objective

To gain knowledge of monitoring the dams and reservoirs and regulations associated with the operations.

# **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Contact |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hours   |
| SECTION-I   | Investigation of dams sites: General & extent of investigation,<br>Preliminary and Final investigation, Geological investigation, Sub –<br>surface investigation, Drilling and Sampling. Soil test & other utility:<br>General various soil test for coarse, Sand and gravels, Clay, Silts & fine<br>sands, Tests of foundation material shear consideration and settlement<br>tests O.M.S. consideration.                                                          | 16      |
| SECTION-II  | Earth Dams: General History, Advantages and disadvantages,<br>General features of earth & rock-fill dams, Design consideration for<br>the various components. Flow through saturated Porous Media:<br>Darcy' s law – its applications, Laplace equation for isotropic and<br>anisotropic soils, theory offlow nets.                                                                                                                                                 | 11      |
| SECTION-III | Seepage through embankments and its controls: General determination of<br>phreatic line by different methods, Effect of seepage, Piping, control of<br>seepage and exit gradients by different structures such as cut off, Sheet<br>pilling upstream blankets, filters, internal drains etc. Failure &<br>Maintenance of earth Dams: Cause & remedies of hydraulic seepage and<br>structure failures, Causes of foundation failure and maintenance of Earth<br>dams |         |
| SECTION-IV  | Construction material and Methods: General consideration for the construction of materials, suitability of different materials for various components earth dams. Soil unsuitable for dam construction by roll,Hydraulic- fill & semi hydraulic fill methods.                                                                                                                                                                                                       | 8       |

# **Course Outcome:**

| CO1 | Students will be able to understand lateral earth pressure theories and pressure theories and design of retaining walls. |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| CO2 | Students will be able to design coffer dams and earth dams by different methods                                          |
| CO3 | Students will be able to understand pressure envelops and design of various components in braced                         |
|     | cuts, coffer dams                                                                                                        |
| CO4 | Students will be able to                                                                                                 |

- 1. U.S.B.R. " Design of small Dams"
- 2. Creger Justin and Hinds "Engineering for Dams Vol. 2 & 3.
- 3. J.Nemec " Engineering Hydrology"



## SUBJECT TITLE: APPLIED SOIL MECHANICS SUBJECT CODE: MTCE-156 SEMESTER: III CONTACTHOURS/WEEK: Lecture(L)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3hrs

## Objective

To have thorough knowledge of clayey soil minerals and bonds and factors governing its engineering behavior

**Contents of Syllabus:** 

| Sr.No       | Contents                                                                                                                                                                                                                                                                                                                                | Contact<br>Hours |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| SECTION-I   | Introduction to stability of slopes, Stability number, Friction circle,<br>Bishop's method of slices- simple and rigorous ; Wedge method, Factor of<br>safety w. r. t. height and strength. Earth work construction, Embankments,<br>Earth dams, Field compaction, Seepage and piping in embankments and<br>dams construction problems. | 14               |
| SECTION-II  | Stabilization of soils: Mechanical, Electrical and Chemical methods of stabilization, Problems of excavation, Dewatering, Stability of base and embankment. Arching in Soil & underground culvert and conduits.                                                                                                                         | 14               |
| SECTION-III | Swell and shrinkage, Soils characteristics, swelling pressure of soils,<br>Mechanics of Swelling, Crack. Design of open cuts.                                                                                                                                                                                                           | 12               |
| SECTION-IV  | Soil Freezing Permafrost: Geo thermal profile, Freezing index. Depth of frost penetration & its determination, Freezing in coarse and fine grained soil, Fields frost heaving.                                                                                                                                                          | 8                |

# **Course Outcome:**

| CO1 | Students will be able to calculate and analyze the stresses on soil and be able to draw the stress |
|-----|----------------------------------------------------------------------------------------------------|
|     | paths                                                                                              |
| CO2 | Students will be able to analyze the effect of flow of fluids through soils                        |
| CO3 | Students will be able to evaluate the compressibility of soils                                     |
| CO4 | Students will be able to obtain the shear strength of soils                                        |

- 1. USBR " Design of Small Dams"
- 2. Das, Braja M " Advanced Soil Mechanics"
- 3. Lamba& Whitman "Soil Mechanics"
- 4. Tylor, D.W. "Fundamental of soil Mechanics"



# SUBJECT TITLE: ENVIRONMENT IMPACT ASSESSMENT & MANAGEMENTSUBJECT CODE: MTCE-157SEMESTER:IIICONTACTHOURS/WEEK:Lecture(L)Tutorial(T)Practical(P)

| Lecture(L) | Tutorial(T) | <b>Practical(P)</b> | Credit(C) |
|------------|-------------|---------------------|-----------|
| 3          | 1           | 0                   | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

## Objective

This course is designed to impart the knowledge about various softwares to do the water treatment, environmental ethics.

#### **Contents of Syllabus:**

| Sr.No       | Contents                                                                                                                                      | Contact<br>Hours |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|             | Introduction- Components of Environment- Man and Environment –                                                                                |                  |
| SECTION-I   | Health and Environment – Environmental Ethics – Interdisciplinary nature                                                                      |                  |
|             | of Environment -Sustainable development – Social, economical and environmental dimensions                                                     | 6                |
|             | Elements of EIA – Purpose – Screening – Scoping - Terms of Reference -                                                                        |                  |
| SECTION-II  | Public Consultation - Environmental Clearance process followed in India -                                                                     |                  |
|             | Key Elements in 1994 & 2006 EIA (Govt. of India) Notification                                                                                 | 7                |
|             | Socio-economic impacts - Impact types- Identification- Impact assessment                                                                      |                  |
| SECTION-III | Methodologies Overlays, Checklist, Matrices, Fault Tree Analysis, Event                                                                       |                  |
|             | Tree Analysis- Role of an Environmental Engineer- Public Participation-<br>Introduction to latest softwares in water and air quality Modeling | 8                |
|             | Water Quality Analysis- Standards for Water, Air and Noise Quality -                                                                          |                  |
| SECTION-IV  | Impact of development on vegetation and wild life-Environmental Management Plan- EIA- Case study related to Hydro electric Project.           | 10               |

## **Course Outcome:**

| CO1 | Explicate the concept of EIA                                    |
|-----|-----------------------------------------------------------------|
| CO2 | Illustrate the necessity of public participation in EIA studies |
| CO3 | Summarize the importance of environment attributes              |
| CO4 | Quantify impacts for various developmental projects             |

- 1. Larry W Canter, Environmental Impact Assessment, McGraw Hill Inc., NewYork.
- 2. EIA Notification, Ministry of Environment & Forests, Govt. of India, 2006.
- 3. Rau G J and Wooten C.D, EIA Analysis Hand Book, McGrawHill.
- 4. Robert A Corbett, Standard Handbook of Environmental Engineering, McGrawHill.
- 5. John Glasson, RikiTherivel and S. Andrew Chadwick, Introduction to EIA, University CollegeLondon PressLimited



# SUBJECT TITLE: ROCK MECHANICS SUBJECT CODE: MTCE-158 SEMESTER: I CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 3          | 1           | 0            | 4         |

Internal Assessment: 40 End Term Exam: 60 Duration of Exam; 3 Hrs

## Objective

To impart knowledge of rock structure, features and rock mass classification

## **Contents of Syllabus:**

| Sr.No                                                                             | r.No Contents                                                          |       |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|--|--|
|                                                                                   |                                                                        | Hours |  |  |
| ~~~~~~                                                                            | INTRODUCTION: Introduction on the rock mechanics its relation          |       |  |  |
| SECTION-I                                                                         | with engineering Geology and soil Mechanics-Importance and             |       |  |  |
|                                                                                   | application of the rock mechanics to Civil Engineering.                |       |  |  |
|                                                                                   | CLASSIFICATION: Review of litho-logical classification of rocks,       |       |  |  |
|                                                                                   | Engineering classification of intact and fissured rock- Deere & Miller |       |  |  |
|                                                                                   | and Deere classification -RQD classification on wave velocity          |       |  |  |
|                                                                                   | relation classification on fissures joints and faults.                 |       |  |  |
|                                                                                   | ENGINNERINGPROPERTIESOFROCKMASSESLAB.TESTS:                            |       |  |  |
|                                                                                   | Void- index test, Compression & tensile tests, Permeability,           |       |  |  |
|                                                                                   | Strength characteristics, Strength of intact and fissured rocks,       |       |  |  |
| SECTION-II                                                                        | Effect of test conditions. STABILITY IN ROCK SLOPES:                   |       |  |  |
|                                                                                   | Modes of failures in rock masses simplified Bishop's method,           |       |  |  |
|                                                                                   | Janbu's method, Hock's method, Wedge'smethod.                          |       |  |  |
| SECTION-III IN SITU TESTING OF ROCKS: Field direct shear test, Triaxial test, Use |                                                                        | 8     |  |  |
|                                                                                   | of flat jacks, Cable jacking, Chamber test & Plate load test           |       |  |  |
| SECTION-IV                                                                        | SECTION-IV STABILISATION OF ROCKS: Rock Bolting, Principle of rock     |       |  |  |
|                                                                                   | Bolting, Rock grouting, Grouting materials, Grouting operations &      |       |  |  |
|                                                                                   | method of grouting.                                                    |       |  |  |

# **Course Outcome:**

| CO1 | Students will be able to understand of the mechanical behavior of rock materials, rock              |
|-----|-----------------------------------------------------------------------------------------------------|
|     | discontinuities and rock masses                                                                     |
| CO2 | Students will be able to gain knowledge of rock mass structure, discontinuities features and rock   |
|     | mass classification                                                                                 |
| CO3 | Students will be able to understand rock strength & deformability and in situ stress testing method |
|     | and its effects on design in massive elastic rock and stratified rock, respectively.                |
| CO4 | Students will be able to know about methods of determine Engineering Properties of Rocks and        |
|     | their measurement in the laboratory and at site                                                     |

- 1. Goodman R.E." Rock Mechanics"
- 2. Rock Mechanics for Engineering : B.P. Verma
- 3. Engineering Geology : D.S.Arora
- 4. Engineering Geology : Parbin Sing



# SUBJECT TITLE: SEMINAR SUBJECT CODE: MTCE-181 SEMESTER: I CONTACT HOURS/WEEK

| Lecture (L) | <b>Tutorial</b> (T)     | Practical (P)        | Credit (C) |
|-------------|-------------------------|----------------------|------------|
| 0           | 0                       | 0                    | 2          |
|             | Internal Assessment: 10 |                      |            |
|             | End Term Exam: NA       |                      |            |
|             |                         | Duration of Exam: NA |            |

**Objective:** To offer challenging academic content that promotes engaged learning and critical thinking.

# **Contents of Syllabus**

Seminar will be an independent study on the related topic and will be evaluated internally.



# SUBJECT TITLE: PRE-THESIS SEMINARSUBJECT CODE: MTCE-182 SEMESTER: III CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 0          | 0           | 0            | 4         |

Internal Assessment: 100 End Term Exam: NA Duration of Exam: NA

**Objective:** To provide an accurate description of the specific actions that will be taken to complete thesis.

## **Contents of Syllabus:**

Following things to be included in Pre-thesis Seminar:

1. Literature survey.

2. Gap Reflection.

3. Objectives and Methodology

4. Expected Outcomes

Synopsis presentation through PPT will be evaluated internally



#### SUBJECT TITLE: PROJECT SUBJECT CODE: MTCE-183 SEMESTER: III CONTACTHOURS/WEEK:

| Lecture(L) | Tutorial(T) | Practical(P) | Credit(C) |
|------------|-------------|--------------|-----------|
| 0          | 0           | 0            | 10        |

Internal Assessment: 100 End Term Exam: NA Duration of Exam: NA

**Objective:** To provide an accurate description of the specific actions taken by individuals in order to reach the aim.

#### **Contents of Syllabus:**

Students are required to work on project in any of the specified Area (Transportation and Highway Engineering/Structural Engineering/ Infrastructure development and Management and Environmental Engineering). Project will be evaluated by the external examiner and the internal guide. The candidate is required to

Project will be evaluated by the external examiner and the internal guide. The candidate is required to make presentation of his Project work and Viva-voce will be held.



SUBJECT TITLE: THESIS SUBJECT CODE: MTCE-190 SEMESTER: IV CONTACTHOURS/WEEK:

| Lecture (L) | Tutorial (T) | Practical (P) | Credit (C) |
|-------------|--------------|---------------|------------|
| 0           | 0            | 0             | 20         |

External Assessment: 100 End Term Exam: NA Duration of Exam: NA

**Objective:** To provide an accurate description of the specific actions taken by individuals in order to reach the aim.

#### **Contents of Syllabus:**

- 1. Thesis in the specified Area (Transportation and Highway Engineering/Structural Engineering/Infrastructure development and Management and Environmental Engineering)
- 2. Thesis will be evaluated by the external examiner and the internal guide. The candidate is required to make presentation of his thesis work and Viva-voce will beheld

